Society for Economics Research in India
Working Paper Series

TOO COSTLY TO FOLLOW BLINDLY: ENDOGENOUS
LEARNING AND HERDING

Srijita Ghosh
(Ashoka University, Sonepat)

Working Paper No. 4
http://seri-india.org/research

September 2020


http://seri-india.org/research

Too Costly To Follow Blindly: Endogenous Learning and Herding *
Srijita Ghosh'

September 2020

Abstract

I analyze the impact of endogenizing social and private learning in a herding problem. Pri-
vate learning is modeled & la rational inattention literature. I find a non-monotone relationship
between social and private learning. They are substitutes when private learning is sufficiently
cheap and become complement for higher private learning costs and eventually becomes unin-
formative. This happens because an increase in private learning costs makes social learning less
informative. As an implication, only the reduction of the cost of private learning unambigu-
ously increases welfare contrary to the herding result, where restricting social learning initially
is optimal.
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1 Introduction

In several economic decision making problems agents deliberate before choosing an alternative.
Starting with Banerjee (1992) and Bikhchandani et al. (1992) several papers have analyzed the
impact of social learning on decision making when agents also get private signals exogenously. This
literature had examined a feature of the dynamics of learning where if the first few generations
of agents choose the same action then subsequent generations will ignore their private signals and
mimic the action of their predecessors. This phenomenon, known as herding, generates a policy
prescription of suppressing social learning in earlier generations.

A natural question to ask here is what if agents do not exogenously learn about actions from
all their predecessors or get a private signal but choose how much social or private information
they want to gather, how would that change the equilibrium? How does individual information
choice get affected by the amount of information available in society? Is herding robust to such
endogenous learning? What would be a welfare-improving policy?

For example, consider an undergraduate student deciding her major choice. The major choice
had a significant effect on lifetime earning, but at the time of the choice the student may not know
what major would suit her best and improve her expected lifetime earnings, and once the decision is
made it is difficult to change. In that case, the student can ask her friends about their major choice
and do some exploration on her own, before making a choice. The choice problem outlined here
predicts the optimal learning decision for major choice given the student faces a cost of learning.

To evaluate the impact of endogenizing learning, I use the following ingredients: a mechanism
for private learning, a mechanism for social learning, and a model of social connectivity. Private
learning is informative about idiosyncratic types and is subject to a cost a la rational inattention
literature. The cost ensures agents do not necessarily learn fully about their types.

The social learning model is similar to herding literature. In every generation, a large but finite
number of agents enter. Generation ¢ agents choose action in period ¢ and the ¢ + 1 generation can
observe the actions chosen by their immediate predecessors in generation ¢. Similar to the herding
literature future generation agents can only observe the action of their predecessors and not the
belief or realized payoff. Social learning is thus informative about the distribution of types in the
economy.

A general theory of social connection structure would require specifying the social network. For
simplicity, we abstract away from network structures and assume that observing more agents is
weakly more costly. For a more connected society, the marginal cost of social learning would be
lower.

In this framework, I solve for the optimal learning strategy for a one-time discrete choice prob-
lem. Before solving for the optimal learning strategy I show the optimal learning control would
be to choose social learning first, followed by private learning. Thus the information that the DM
obtains from social learning can affect her private learning strategy. This implies it is possible to
obtain a herd if social learning effectively stops the DM from learning privately.

However, in herding models, once sufficiently many agents choose one action, others ignore their



private signals and mimic, making the two types of learning substitutable. But in herding models,
there are no costs of any form learning it is not possible to analyze whether the DM would decrease
one form of learning when the cost of other forms of learning decreases, i.e., substitutes in terms
of standard price theory. Here, I analyze whether agents increase or decrease their optimum level
of social learning as the marginal cost of private learning increases, i.e., would social and private
learning remain substitutes or become complements?

I show, for a given weakly increasing and weakly convex cost of social learning function, social
learning change non-monotonically with the marginal cost of private learning. Fixing a social
learning cost function, there exists a threshold below which the two types of learning are substitutes
and above which they become complements. When the cost of private learning is very high, agents
stop all forms of learning. The main intuition is, as the marginal cost of private learning increases,
Bayesian agents correctly update that social learning is less valuable since other agents also learn
less privately. When this effect starts to dominate the relative cost advantage, the two types of
learning become complements.

Unlike the herding literature, restricting social learning initially is not necessarily welfare im-
proving. When the two types of learning are complements reducing access to social learning makes
agents weakly worse off. However, reducing the cost of private learning unambiguously increases

total welfare in the economy.

1.1 Literature Review

The rational inattention literature considers the discrete choice problem of a decision-maker subject
to costly information. Following Sims (2003), Matéjka and McKay (2015) modeled the cost of
learning as a linear function of the Shannon’s relative entropy between the prior and the posterior
belief and showed the optimal stochastic choice takes the form of multinomial logit. Caplin and
Dean (2015) gives axiomatic characterization for costly information acquisition problems. Caplin
et al. (2019) showed that rationally inattentive behavior implies consideration sets. Caplin et al.
(2015) combined exogenous social learning of market share to a model of rational inattention. They
found that observing the market share affects the private learning, and subsequently the optimal
behavior of the agent in the model.

Banerjee (1992) showed that herding is an equilibrium, albeit, inefficient and Bikhchandani et al.
(1992) showed a small change in the initial condition can lead to different information cascade. Park
and Sabourian (2011) discusses a rational herding model where agents herd when information is
sufficiently dispersed.

There is another literature that this paper connects to philosophically, though the models
considered are significantly different. Several authors, in various contexts, ranging from finance
to labor market decision, have shown how either existing knowledge or social learning affects the
learning and decision making behavior of the DM. For example, in the context female labor force
participation, Fernandez (2013) showed that how social learning in form of culture affects the labor

market entry decision for women, Fogli and Veldkamp (2011) showed that women observe the choice



made by others in the neighborhood along with her mother’s labor market decision, which affects
her own labor market decision. In a different example, Van Nieuwerburgh and Veldkamp (2009)
showed how the learning behavior changes depending on whether the origin of an asset, home or
foreign. Similarly in this model, DM optimally chooses to learn socially first, which distorts his
choice of the private learning and subsequently his decision.

The rest of the paper is arranged as follows. Section 2 describes the two cost structures and
sets up the baseline model. In section 3, I solve the agent’s optimization problem to show the
non-monotonicity result and discuss the herding behavior, and section 4 concludes. All extensions

and additional proofs are in the appendix.

2 Model

2.1 Environment

Consider an infinite horizon economy in discrete time, i.e. ¢ € {0,1,...,00}. At each period t a
large but finite number of agents, N, enter the economy. At any period ¢ > 0 when an agent enters
the economy he chooses to learn, takes an irreversible action, and leaves the economy never to come
back again.

Let A = {a, b} be the set of actions. Agent doesn’t know his payoff from choosing action i € A.
Let = {w1,w2} be the set of all possible strict rankings of payoffs in A, where w; = a > b and
wo =b > a. Let I' = A () be the set of possible distributions over (.

Let A (T") denote the set of all possible distributions over I'. At any period ¢ > 0 agents enter
with a common prior 79 € A (I'). After entering, the agent tries to learn about his own type w; and
chooses takes an alternative i € A. Let u* denote the true distribution of types where p* € int (o).

Let u: A x 2 — R be the state dependent utility function. Consider,

(1)

where 4 > u, so type wy gets a higher payoff from action a and type wo gets a higher payoff
from action b. Define Au = @ — u, the gain in payoff by matching over mismatching the state.

Assume that agents are Bayesian expected utility maximizers.

2.2 Costly learning

Agents can learn privately and socially. The social learning is informative about the distribution

of types pu € I', and private learning is informative about own type, w € 2.



2.2.1 Private learning

Let 7(s,w) be an information structure that generates a distribution of posterior beliefs v, € A(T).

Then for any prior belief € T' the posterior belief for any state w given signal s would be

7 (slw)p(w)
2 T(slw)p(w)

Pr(w|s) =

Let us assume for any p € supp(vy), m(s,w|p) = 7(s,w), i.e., the signal structure is independent of
the prior belief u. If two distinct signals generate the same posterior belief then they are equally
Blackwell informative (Blackwell et al. (1953)). Since more signals are weakly more costly it is
optimal to choose an unique signal to generate a posterior belief. Hence, the probability of any

posterior belief is
= (Pr(wls) Z 7r = Pr(s).
w
By Bayes Plausibility (refer Kamenica and Gentzkow (2011), Matéjka and McKay (2015) )

ZP (W[8)vx(P(wls)) = p(w).

Choosing any = is hence equivalent to choosing an information structure

P(wls)y(P(w]s))

msl) = =)

By similar logic of Blackwell informativeness two distinct posteriors cannot generate same distri-
bution over actions. Hence choosing a distribution of posterior probability of actions is equivalent
to choosing an information structure.

The cost of private learning is given by Shannon’s relative entropy between the prior and
the posterior probability of choice (Cover and Thomas (2012)). Let P (i,w|p) be the posterior
probability of choosing action i € A when type is w € Q and prior 4 € I'. Define P (ilu) =
> wea bt (w) P (i,w|p) as the prior probability of choosing action a € A. The cost function is given
by,

Cm)=xq D nw) Y Plawp)nP(a,wp) — Y Plalp)nP (aln) (2)

we a€A a€A

expected entropy of the posterior distributions entropy of the prior distribution

where \ € [0, 0] be the marginal cost of private learning

The specific form of the private cost function simplifies our analysis, however, there are some

! We can also write C (X, 1) = AD(P(a|p)||P(a,w|u))



interesting properties of the cost function that makes it an appropriate choice here. First, the cost
function belongs to a class of cost function, named, Posterior Separable (PS) (refer Caplin, Dean,
and Leahy (2018)) which allows the cost to be dependent on the posterior only. Second, the cost
function allows the cost to be increasing in precision without any distributional assumption on
the prior or signal structure. Third, the cost of a learning strategy depends on the prior. This
captures the notion that with a sufficiently confident prior the cost of learning becomes relatively

more expensive for further learning. This will make it easier for a herding equilibrium to exist.

2.2.2 Social learning

Any agent at any period t > 1 can observe the action of any ¢t — 1 generation agents subject to a
cost. The cost of social learning ¢ (n), where n be the number of ¢ — 1 generation agents that an

agent in generation ¢ observes, has the following properties,

c(n)>0, 0<n<N, c¢(N)>u

cn)<cn+1), c¢cn)—cn+1)<cn+1)—c(n), 0<n<N-1 ®

i.e., ¢(n) in non-negative, weakly monotone and weakly convex, and observing everyone are never
optimal. Once the t generation agent decides n, he randomly picks n agents from generation ¢ — 1
and observes there action is a block. In the online appendix, I show the consequence of sequential
learning.

Let x,, denote the distribution of action a chosen by n agents. The Bayesian agent, given a belief
~ updates her belief to v,, € A(I') upon observing z,. Here, he accounts for possible mismatch

between state and action chosen by his predecessors.

2.3 Time 0 agents

The t = 0 agent has only the option of learning privately. Let po(w) = E,(@(w)) the optimization
problem of a t = 0 agent is given by,

V (A, po) = PR > 1o (W) P (i, wlpo) u (i,w) = C (A, o) - (4)
LWIKO ) e

Following 7?7, the solution to the agent’s optimization problem would be

P (ilpo) 5
P (i,w|po) = Ko oy Vi€ Awe (5)

ZjeA P (]|M0) e A

The Bayesian plausibility implies given their prior g,

o exp (u (i,w) /N) .
2 ) S e G S T e (6)



The inequality holds with equality if P (i|y) > 0.
Using equation 6 for both a,b € A we get,

po(wi) exp(@/A) —po (w2) exp(u/X) . <1 Holw1)
oxp(a/3)—exp(a/2) if Au//\ <In o(n) < Au/\

P (alpo) = {1 if In £0#L > Ay /A (7)

po(w1)
(w
0 if In “0( < —Au/\

)
1)
o (ws2)

Thus the posterior probability of choosing actions in different states can be obtained by combin-
ing equation 5 and 7. Since the information structure is independent of the u € supp(7o), private
learning is only informative about 2.

Note that, even in absence of social learning, the time ¢ = 0 agents do not always learn per-
fectly about their types, hence the observed distribution of action contains both heterogeneities of
idiosyncratic payoff and mistakes. Let €2 = P (a,ws|y) and €} = P (b,w1|y) be the corresponding
mismatch probabilities when choosing a and b at time ¢ = 0 by type w2 and type w; agents respec-
tively. Since it is common knowledge that agents are Bayesian expected utility maximizer with the

same cost of private learning, every agent chooses the same distribution of posteriors.

2.4 Time t > 1 agents
2.4.1 Optimal Learning Protocol

Any t > 1 period agent has two different choices for learning, namely social and private learning.
The following lemma shows, optimal sequencing would always be of the form: first social learning

then private learning.
Lemma 1. Any agent in period t > 1 would optimally choose to learn socially first then privately.

Proof. Suppose not. Consider an agent with belief v; who chooses to learn privately first then
observe n agents and update privately again if needed. I will show the agent can be made better
off by choosing an alternate strategy where he first learns socially then privately. Since 7(s,w) is
independent of u the optimal choice of n would be the same under both strategies.

Let us first consider the case where private learning is optimal at every u € supp(v1) and after
observing n. Suppose after observing n agents the belief is updated to 4. Then cost of private

learning under the first strategy is

C1 = A [D(P (alu) ||P (0, wls)) + Esy (D(Pla, wli)|| Pla, w])))]

where P(a,wl|fi)) is the updated posterior distribution of action upon observing n agents but need

not be optimal at the updated belief 4, and P(a,w|ft) be the optimal choice at fi.



Under the second strategy the cost is

Ca = A [, [DP (@l 1P (a1

= X[ £,y [DP (@li) 1P (a,17)) + D(Plasl)| [P, wl)] ]

The second equality is obtained by adding and substracting E., 3 cq H(P(a,w|f)) Since the
agents are Bayesian, the order of private and social learning does not affect the distribution of

belief generated. Thus for every p € supp(¥) we have,

D(P (alp) ||P (a,w|p)) = D(P (aln) || P (a, w|f2))
= Cl = 02.

So the agent will be indifferent between the two strategies. If however, 4 generates a belief 1 such
that

in 2 € (o0, Au/N U (Bu/A,00) but In 2L € -/, au/,

then the second strategy makes him strictly better off by saving the cost of private learning. Hence,

proved. ]

The main intuition of the proof is as follows: social learning is informative about the distribution
of types and private learning is informative about the idiosyncratic type. Learning socially first
changes the prior belief over DM’s type, reducing the cost of learning. But if some social learning
is done after private learning then there is a positive probability of paying an additional cost for
private learning that could have been avoided ex-post. Since the cost of learning is a sunk cost, it
is weakly better to learn socially first, privately later.

Let ., € A(T) be the interim belief after observing x agents choosing a out of n randomly

observed agents. The agent’s problem becomes,

W(Ay)=max > V(A u)w, (k) —cn) (8)

pEsupp(Yan )

2.4.2 Social learning and order of beliefs

Suppose an agent ¢ at time ¢ observes n agents from generation ¢ — 1, then he will update his belief
over A (I') via Bayes rule. If the agent’s observed sample is x,, i.e. x out of n agents chose action

a then the posterior probability of any distribution u € supp(7o) is,

P (ulys ) = ) P (wa|p) P (1) (9)

vesupp(y) P (J}n|1/) P (Vh/)

and zero otherwise.



To calculate the P (z,|p), the agent needs to know the posterior choice probabilities of the
earlier generation. This probability would be different for different generations. A time ¢t = 1
agent knows any t = 0 agent had done only private learning. Given the common prior v9 and the
marginal cost of learning A the posterior choice probabilities can be obtained. All later generations
need to take into consideration the optimal level of social learning in the earlier generation (n;_,),
distribution of interim beliefs over v(n;_;), and the distribution of posterior choice probability for
each such distribution.

For a t = 1 agent, the probability of observing x,,, given prior y would be,

- )
P(znln) =2 ) (:z:n —Zj + k:) e TR () (1 - eS)xn g

k=0 j=k* (10)

(1 B M)n—xn—k+2j (é)})kij (1 B 68>n—xn—k‘+j

where
. 0 if k<min{z,,n—z,}or z, <k<n-—uz,
kE—n+x, if k>max{z,,n—z,tor n—x,<k<uz,
and
- ko if kE<min{z,,n—z,}or n—x, <k<uax,

x, if k>max{x,,n—zyjor x,<k<n-—z,

Plugging the value obtained from equation 10 into equation 9 we can calculate P (u|y,zy) for every
€ v, and can update the belief to v, .

Agents are ex-ante identical, any agent in a generation would choose the same n. Consider
a period t agent who knows that period ¢ — 1 agents optimally chose to observe m people from
generation t—2. Let X, denote all possible sample distribution for sample size m. Let the mismatch
probabilities be €}, = P (a,ws|v, 2m,t) and egm’t = P (b,w1|y, Tm,t) after observing z,,, € X,
in period ¢. Using prior 7y, the distribution over X, can be obtained, which generates implied
distributions f$ and fé’ over €, and Egm,t respectively. Let e, , and Efn,t as Ein,t = Jo ex ef,:m’tdf;,
i.e., the expected probability of making mistake by choosing ¢ in period t — 1 after observing m
many agents from generation ¢t — 2.

Since ¢t = 0 agents choose only private learning, nj is common knowledge and iterating the
argument and using the fact that all agents are ex-ante identical, given ¢ (n) and A the sequence of
optimal choice of nj and the corresponding ei; for ¢ € A would also be common knowledge to all
generations. P(x,|u) can thus be calculated by replacing € by 52;_1,t in equation 10 for any ¢ > 1

generations.

2.4.3 Private Learning

Given lemma 1, we know agents first learn socially then with the updated belief 4/, they learn

privately. Following equation 5 the optimal private learning of an agent in any period ¢t > 1 would



be same as a t = 0 agent, except with a different interim belief over T,

u(i,w)
P (i]vy .
P(i,wlye,) = () e gy (11)

u(j,w)

ZjeAP(jh/xn)e A

Note that the 7, doesn’t have a time dimension because the only way different generation

would be different in their behavior is through social learning and +,, captures the differences
via social learning. Hence the agent with belief «y, chooses to learn privately only if, —Au/A <
Hapn (wl)

In Pras < Au/X where fiz, (W) = 3, coupp(ys,) Yon (W) p(w). For any other value of 7, he would

choose one action for sure.

3 Results

3.1 Optimal Learning Strategy

The following theorem characterizes the relationship between optimal private and social learning

obtained from solving the optimization problem in equation 8.

Theorem 1. Given the social learning cost function in 3 and the prior vy, there exist 0 < A* <
M < M < oo, such that

1. For all X < N\*, the optimal level of social learning at any period t > 1, nf (A1) < nf (A2),
where A1 < Ao, i.e. optimal social learning is non-decreasing in marginal cost of private

learning or social and private learning are “substitutes”.

2. For all A € [)\*,)\j) U (/\j,/\**}, the optimal level of social learning at any period t > 1,
ny (A1) = nj (A2) where \; < A2 and either \1, Ao € [)\*, /\j> or A\, A € (x\j, /\**}, i.e optimal
soctal learning is mon-increasing in marginal cost of private learning or social and private

learning are “complements”.
3. For any t > 1, limy,;_ nj (A) < limy, . nf (X), d.e. the optimal nj takes an upward jump at N.
4. For all A > X\**, no learning is optimal.

The proof of theorem 1 is given in the appendix. The main intuition behind the result is as
follows: the cost of private learning has two opposing effects on the optimal learning strategy. When
the cost of private learning is high, DM would choose to substitute private learning by relatively
cheaper social learning but a lower level of private learning implies the informativeness from social
learning is also lower, since the predecessors have not chosen a high level of private learning as well.

When the cost of private learning is sufficiently low, the effect on loss of informativeness is
relatively small, since everyone in the economy already chooses a high level of private learning. As
the cost of private learning increases the substitutability component becomes relatively smaller,

making the two types of learning complementary.
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Futhermore, the shape of the private cost of learning makes the interim value function, after
social learning, is given by figure 2. The optimal learning strategy is to avoid being in the decreasing
section of the value function. This generates the jump in the learning strategy.

Finally, for high enough private cost of learning, all forms of learning become uninformative
since early generations makes decision based on the prior belief alone. Thus all the following

generations would choose no social learning as well, stopping all forms of learning in the economy.

3.2 Herding

Herding, as defined in the literature, refers to a phenomenon where, if sufficiently many agents have
chosen the same action, all subsequent generations choose the same action ignoring their private
signal. In this framework, we define herding as follows: for any prior vy there exists np(vy), such
that if more than ny(y0) agent chooses action a (or b) in period ¢ then agents in all periods s > ¢

would observe n} > 0 agents and choose a (or b) without any private learning.
Corollary 1. For all A € [0,00] \ [)\j, A**} there doesn’t exist any herding, almost surely.

Proof. Using theorem 1, for all A > A\** the optimal social learning is zero. Hence herding cannot
occur.

For all A < M, the i, € Ry, hence for any belief s, after observing z,, In % € (—Au/A, Au/N).
This implies for all possible values of x,, the optimal level of private learning is not zero. Since
private learning is informative about idiosyncratic state, the probability of everyone choosing action
a (or b) after private learning would be zero for any p* € int (7). Hence, there is no herding with
probability 1.

But for A\ € {/\j, /\**}, iin € R3, hence there exists x* such that if more than x* agents choose a

(or d), In Zg:‘gg € (—oo, —Au/N\) U (Au/X, 00). If sufficiently many agents chooses a (or b) in period
t such that for all £+ 1 agents for all possible values of observed x,, p,, € Rs then all agents in t+1
would choose a (or b) without any private learning. Then for every s > ¢ + 1 observed z,, = n (or

0) and they would choose a without any private learning. Thus, herding cannot be ruled out. [J

Consider the policy where the first few generations are not allowed to learn socially. This is
a welfare-improving policy in the herding literature. But given 1 since herding is only optimal
when A € [M, A**] where the two types of learning are complements, reducing social learning would
reduce the level of private learning and can reduce the net expected payoff of the agent. Thus this
is not unambiguously a welfare-improving policy. However, since for any u, V (i, A1) > V(u, Ag) if

A1 < Ag, reducing A increases expected payoff unambiguously.

4 Conclusion

For simplification, I have made several assumptions about learning protocols. Assuming the payoff
only depends on idiosyncratic states implies social learning is only informative about the distri-

bution of types. The assumptions of the homogeneous private and social cost of learning allow

11



the agents in a later generation to update their information upon social learning from previous
generations. Also, for social learning, we assumed the protocol of block learning where n is chosen
before any observation. This assumption generates lemma 1.

In the appendix, we relax all these assumptions. We consider four extensions, namely, aggregate
state affecting payoff, heterogenous cost of private and social learning, and sequential learning
protocol. Under suitable adjustments, all these extensions preserve the main result of the paper.

The specific form of private learning function can be restrictive. For example, the cost of
learning cannot have a fixed component. However, the mutual entropy function captures much
relevant learning technology (e.g., cost increases in the precision of signals).

To conclude, this paper solves a model of individual stochastic choice where agents are ratio-
nally inattentive and face a costly social learning function. The optimal choice of social learning is
non-monotonic in the marginal cost of private learning. Herding can only happen for an interme-
diate level of private cost of learning where the two types of learning are complements. The only

unambiguously welfare-improving policy is to lower the marginal cost of private learning.
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A Appendix

A.1 Proof of Theorem 1

Proof. Given lemma 1, we can solve the optimization problem backward. First, for any intermediate

*

belief u € supp () the optimal private learning generate V' (u), then given V(u), n* is chosen to

maximize W (7).

Step 1: No learning above \** Given 7 if In ZEZS € (—oo,—Au/\) U (Au/\, o) then

private learning is not optimal for any ¢ > 0 and hence social learning is not informative, because

agents choose according to their common prior. Consider A** = max {— In % /Au,In Z EZ;; / Au},

then no learning is optimal for A > A**.

Step 2: Shape of V (u) Let p = 3, v(u)p(w1), po = P(alp) and A = exp (a/)\), A =
exp (u/X). Substituting in equation 5 we get
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Npaj\ +_(1 — //’)(1 B pa)j‘
Pa + (1 - pa)A

(1= ) pad + p(1 = p1)A
(1 = pa) A+ paA

+u

Vip) =u

_ [ _ DaA N —— DaA 7(1 - pa) A n 7(1 _pa) A
pa)\_}'(l_pa)A pa>\+(1_pa)A pa>\+(1_pa)A pa>\+(1_pa)A
(1 . M) pa% log pa% (1 - p_a) A In (1 - p_a) A
(1_pa)>\+paA (1_pa)>‘+paA (1_pa))\+paA (1_pa))‘+paA
—Pa 1nga - (1 - pa) In (1 - pa)] . (12)

Given A, V () is continuous in p for p € [0, 1] and continuously differentiable wrt p in the open

_ C
set (0,1) N {)‘, ’\} . Since

1if Ay <p<l Au>0 if A <p<l
pla) = o N =V, = At R
BeE d5is (G—u) A\ XA
A A A+ — .
The cutoffs are differentiable in \, + = — d} = — u/\# 22 < 0 hence, ﬁ(ﬁ) is

(A+2)
decreasing(increasing) in A. In the limit when A — oo the value function V' (u) becomes piecewise
linear in [0, 1] with a kink at 1/2.

. A X
In the region, (/\+/\ /\+/\> € (0,1),

v, =
__Pad i — Mog —— P S et ) EASY PRSP Gl (O,
PaX + (1 —pa) A Par+ (1 —pa) A (1 —=pa) A+ paA (1= pa) A+ paA
1) (2)

Pa w— Alog pa% + 7(1 —Pa) A u— Mog 7(1 —Pa) A
(1_pa))\+pa)‘ (1 = pa) A+ paA PaA + (1 —pa) A PaA + (1 —pa) A
3) (4)

(pa)\+(1_pa))‘) -z T Pa)A
()

A 1 A A 1—
—(1—p) A4 — 2;+§\\ ﬂ—u—)\log( Z;:l>)\]—)\:_\\+ilog Pa (13)
(Pad+ (1 =pa)A) A2 Pad —A P
(7
(6)
Since the value function is symmetric in g around g = 1/2 consider only p > 1/2 region.
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Rearranging terms and plugging p, (refer 7),

A+ o A 1 1
(5) = (6) = () =A=Slog 21— "2 (=4 ——

>0 if wp>1/2

<0 if  p<1/2 >0 if 1/2<u<A/A+A

<0 if A/ AA<p>1/2

) ) A (2pa — 1) (@ — w)
(1) + @) = (@ +3) (pad + (1= pa) 2) (pad + (1= p0) ) =

(1)

i) AP+ (1-pa)) 2 (1-pa)X M (2pa — 1) P
a (pa/_\+(1 —pa)A) (paAJr(l —pa)/_\) (p A+ (1= pa) A) ( WA (1 _pa)A) 1 pa
>0 (2"
Rearranging further,
N (o A (2pa — 1) (1—p)y—p
()= (2)- (Pah + (1 =Pa)A) (Pad + (1= pa) X) QRLPETEEY
>0 for p>1/2
For p > 1/2,
<0 ifpu> 2 +)‘2
1) - (2) = (3+2)”
( ) ( ) >0 otherwise
Combining we get,
, A _ h—u /s - A+ A
lim V/ (u— ) —e> - —%em (A+2%) (A+2) —A;\+/\log)\ <0
N S

(<0)

using the convention 0log0 = 0. Also, lim,,_,; o+ V(1) | 0. Since V(x) is continuous in p by

2 2 N

intermediate value theorem there exists an unique pymay € (8\?‘)2, 3 +>\> where V() attains an
+

interior maximum.

Since hmuﬁﬁ_ V(p) < 0 and hmu%ﬁJr V(p) > 0, V(p) obtains a minima at /\T-/\ Consid-
ering 1 < 1/2, we get V(u) obtains another minima at pu = 1/2 where
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V(,u:1/2)<V<u:)\j\_)\>

i.e.,, V attains global minima at u = 1/2. Figure 1 illustrates the shape of the value function
for different As.

As )X increases, since

> >
N———
A
o

5‘2+A2 B - ~
(5\+A)2 u—u [ A A
- ANE Ay
d\ A2 A + A
A
Py

d
and —= < 0 then the maximizer fi;q, decreases with A. As the interval in which pi;,q, lies shifts
to the left towards 1/2.

V(w)
A=0
— |
A1 7\400
p=0 p=1/2 p=1

Figure 1: The value function V (u) for different As

Step 3: Interaction between private and social learning Note that the probability of
. . . . d(e?+eb . . .
mismatch increases with A, i.e., (c d;\re ) > 0. This generates a bound on updated belief after social

learning. Given a common prior 7o let us define fi,, as the most exterme (all a or all b) posterior
belief after observing n agents. WLOG let p, > 1/2. Fig 2 shows the three possible regions
where i, can lie. I want to show no agent will choose n such that fi, € Ro = (lmaz, u") where
V(") = V(timaz)-

Suppose, the agent choose ny such that p,, € Ry. Consider an alternate strategy of choosing
ng < nj such that given \, no maximizes ji, given fin, < fimaz- Since ng < ny, for any x € [0, no]
M, 18 closer to po than pg, . For example, if po > 1 /2, observing 4 out of 7 agents choosing a is
a weaker evidence for a higher x than 4 out of 5 agents choosing a. Thus V(pz, ) < V(ps,,) since
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C
C

I

0 % Ry Hmaz Ry ,Uh Rs 1

Figure 2: Three regions: Ry = [%, timaz)s R2 = (Mmaz, 1) and Rz = [p" 1]

both lie below fimqaq. For any @ € [n2,n1], V(finy) > V(z,, ) since g, € Rz and fin, € Ry. Thus

ZV/LJ; Zvﬂx

Since ¢(n1) > ¢(n2), the agent would be better off by choosing ny. Hence optimal n would be such
that f, € R1 U R3.

Note, tmaz, % is decreasing in A and y(p|xy,, A) is continuous in A. This implies for any n,
there exists A (n) such that YA < M (n), fi, € R but VA > M (n) iy, € R3. Let

N = min N (n).

Since ¢(N) > @ and X imposes restriction on belief updating by €;, A < co. For any A < M, it is
optimal for the agent to choose n to remain in R; since iiz(A) € Re and for all A > X' the agent
may choose n such that i, € Rs. Consider M > X such that

7

ZV ) Pr (pny |7) — ¢ (1) = YV (un) Pr (ualy) — ¢ (n)

i=1
where n; be the maximum value of n such that ji,, € Ri. At A; agent is indifferent between R; and
r3. Hence, for A > M the optimal n* would be such that ji,« € Rs.

Step 4: Optimal n for A < XY A smaller A implies social learning is more informative but
it also makes private learning cheaper. When the first effect dominates, the two types of learning
are complements, otherwise, they are substitutes.

Since fi,+ € Ry for all A < Aj, limy_,o+ Vl:/\ > 0, because V,, becomes steeper in Ry with an

increase in A. Since ¢ (n) is same for all A but a steeper V,, implies larger increase in the benefit
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from an increase in p, n* would be non-decreasing A for A — 0.

Since, fhmqe is decreasing in A, lim,\_>,\j_V/1)\ < 0 for p € Ne <,u”* (Aj)), i.e n* would be
non-increasing in A in left neighborhood of \/,.

As V!ﬁ is continuous in A and p, for all A, by intermediate value theorem there exists a A\* €
[O, )\j] such that n* is non-decreasing for A < A\* and non-increasing for A > A*. This proves the

part (i) of the theorem.
Step 5: Optimal n for A € (M, \**) For A € (M, \**), ji, € R3. Since €* + €’ is increasing

in A, i.e. [y, is decreasing in A\ given n. But the cost function is same for all A implies n* is

non-increasing in A\. This concludes the proof of part (ii) of the theorem. O
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