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Abstract

A principal contracts with an agent to complete a task. The agent’s ability to com-

plete the task is uncertain and is learnt from the agent’s performance in projects that

the principal finances. Success however also depends on the quality of the project at

hand, and quality is privately observed by the agent who is biased towards implemen-

tation. We characterize the optimal sequence of rewards in a relationship that tolerates

an endogenously determined finite number of failures and incentivizes the agent to

implement only good projects by specifying rewards for success as a function of past

failures. The fact that success becomes less likely over time suggests that rewards for

success should increase with past failures. However, this means that the agent can earn

a rent by deviating and implementing a bad project, which is sure to fail. We show that

this rent decreases with past failures and implies that optimal rewards are front-loaded.

The optimal contract resembles the arrangements used in venture capital, where en-

trepreneurs must give up equity share in exchange for further funding following failure.
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1 Introduction

Consider a firm that evaluates entering a new business. The firm puts a manager in charge

and finances projects related to this business, such as designing prototypes or testing specific

markets. The manager is better informed about the quality of the projects - that is, their

chances of succeeding - but there is uncertainty about the manager’s fit to lead the firm’s

operations in the new business, and therefore about his ability to make projects succeed. In

this paper, we study the optimal mechanism by which the firm delegates experimentation to

the manager while learning about his ability.

The literature on contracting for experimentation has mostly focused on how to in-

centivize effort. Bergemann and Hege (1998, 2005) and Hörner and Samuelson (2013) for

instance, study dynamic moral hazard models in which the principal finances the agent to

work on projects but the agent can choose to divert cash for private benefits or equivalently

not exert effort. However effort is only part of the overall incentive problem. In a managerial

context, it is often likely the case that managers are industrious but the primary issue is

determining how effective managers are in their tasks1. Our goal in this article is to under-

stand how the firm can optimally incentivize the manager to implement the right projects

while learning about the manager’s ability. We analyze a situation where the manager is

better informed about the quality of projects but biased relative to the firm. The experimen-

tation component arises because both the firm and the manager learn about the manager’s

ability as the manager implements projects and they observe the projects’ outcomes. The

agency problem is related to the fact that the manager usually has better information about

the quality of projects in which he can invest, but has incentives different from that of the

firm. The firm would like the manager to wait for good projects and only take those up.
1See for instance Kaplan (1984), who considers effort-based models as inadequate for capturing incentive

issues in management. Further PwC (2017) suggests that problem solving, creativity and innovation are
among some of the most important skills as rated by CEOs across countries.

2



The manager on the other hand, benefits from working on projects regardless of quality.

However good projects are not always available and hence the firm has to provide incentives

for the manager to wait for the good projects. Further, one of the advantages of failure in

projects is that the manager may earn further rents from future projects, while a success

reveals the business is profitable for the firm and might lead the firm to place a specialist

in charge of the business. Thus, the manager might want to take up projects which fail in

order to postpone the completion of the learning phase. The problem of the firm is to find

the optimal amount of funding and reward structure in order to incentivize the manager to

select the right projects.

To study these issues, we develop a model in which a principal contracts with an agent to

complete a task. The agent’s ability to complete the task is unknown to both the principal

and the agent. Completing the task requires success in a project. The agent’s performance in

a project depends both on his ability and the quality of the project at hand. In particular,

only high ability agents have a chance of success in good quality projects, which arrive2

stochastically and may not be available at any given point. Bad quality projects, which

fail regardless of the ability of the agent, are always available. The quality of the projects

available is privately observed by the agent before deciding which project to implement in

any particular period. The principal only gets to observe whether a project implemented

resulted in a success or a failure and not the quality of the project - this is the source of

asymmetric information in the model.

Since only good quality projects can succeed, the principal would want the agent to

only implement these projects. However, the agent is biased towards implementing projects

regardless of quality, since he gets a private benefit regardless of quality of the project and

his ability. In order to incentivize the agent to wait for a good project to arrive, the principal
2The arrival rate of good projects is independent of the agent’s ability. Thus ability here refers to the

agent’s capability of succeeding in good projects.
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offers reward for success in a project.

Failure in a project leads to a reduction in belief regarding the agent’s ability and hence

reduces the belief regarding probability of success in a project. This suggests that the re-

wards for success, needed to incentivize the agent to wait, should increase with past failures.

However, this in turn creates an incentive for the agent to deviate and earn a rent. Sup-

pose the principal expects the agent to implement only good projects. If the agent deviates

and implements a bad project, then the resulting failure leads to a reduction in the princi-

pal’s belief regarding the agent’s ability, while the agent’s belief about his ability remains

unchanged3. Thus, the agent can ensure himself a strictly positive rent by this deviation.

The optimal contract has rewards for success decreasing with the number of past failures.

Since success in a project completes the task and obviates the need for further project

implementation, the agent will select a good project only if the rewards for succeeding in the

project compensates him for the potential loss of continuation rents that selecting a good

project makes more likely. These continuation rents not only include the private benefit from

implementing projects but also rents due to possible divergence in beliefs described above.

These factors combine to produce rewards for success which decrease with the number of

past failures.

Another feature of the optimal contract is that, increasing the number of trials results in

higher rewards to be paid to the agent for success. This is because increasing the number

of trials implies that the potential loss of continuation rents from selecting a good project is

higher for the agent. The loss in continuation rents is higher due to the possibility of getting

private benefits from implementing a larger number of projects as well as earning higher

rents due to the possibility of greater divergence of beliefs.

The optimal number of trials is determined by considering the trade-off between higher

rent paid to the agent and better information obtained through increasing number of trials.
3This is because the agent knows that performance in bad projects is not indicative of ability.
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Increasing the number of trials provides more opportunities for a high ability agent to succeed

and thus reduces the probability that the agent was high ability but failed due to a lack of

sufficient opportunities. However as discussed above, increasing the number of trials leads

to higher bonuses paid to the agents for success. We further find that the optimal number of

trials is an increasing function of the prior belief regarding the agent’s ability and the payoff

that the principal gets from success and is a decreasing function of the cost of implementing

projects.

The model can also be used to analyze financial contracting between entrepreneurs and

investors. An entrepreneur often has a better understanding of the products he can launch,

but may receive private benefits, monetary or reputational, from launching products even

when these are not profitable. Furthermore, it is initially unknown whether the entrepreneur

has the necessary skills to make a good product succeed. Also, success by a entrepreneur

often leads to his replacement4 (Wasserman 2008). Thus we can apply the model to highlight

some of the agency problems present in the relationship between the entrepreneur and the

investor and illustrate how they impact the financial arrangements between them.

Empirical evidence on venture capital financing is consistent with the results obtained

in the model. For instance, Kaplan and Strömberg (2003) find evidence that founders’ cash

flow rights decline over financing rounds and decrease as the firm performance worsens. This

is consistent with the model’s prediction that the rewards for the agent are a decreasing

function of past failures. Similarly the result that a higher prior about the agent’s ability

leads to increased funding is consistent with the findings in the empirical literature on venture

capital financing which suggest that entrepreneurs who have succeeded in the past are likely

to get better deals. (Gompers, Kovner, Lerner and Scharfstein 2010).

Our paper contributes to the literature on contracting for experimentation. A finding that
4For instance, the first major task in a new venture is the development of its product or service. However,

once the product is ready, the business often faces different challenges - marketing, sales and customer
services and hence investors might want to put a different CEO in charge.
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emerges from several papers in the experimentation literature focussed on incentivizing effort,

is that optimal schemes for experimenting are lenient about failure and rewards for success

should be a non-decreasing function of the number of past failures. Halac, Kartik and Liu

(2016), for instance, study long-term contracts for experimentation, with adverse selection

about the agent’s ability and moral hazard about his effort choice. They find that the optimal

bonus structure is either constant or back-loaded, that is the agent is rewarded more for later

success. In contrast, we find that bonus structure should instead be front-loaded, that is the

agent should be rewarded more for success after a fewer number of failures. The difference

is driven by the fact that in our setting the agent gets a private benefit from implementing

projects and hence must be compensated for the loss in continuation payoffs. Manso (2011)

derives an optimal contract where the agent chooses between shirking, exploiting a well-

known approach, or exploring a new approach. He finds that the optimal contract which

induces the agent to try the new approach exhibits tolerance for early failure and rewards for

long-term success. In contrast, in our setting the agent faces a choice between implementing

a bad project or waiting for a good project to arrive to implement it. Our model suggests that

tolerating early failures and rewarding long-term success might lead to adverse incentives for

an agent who derives benefits from continuing to work on projects. In particular, our model

brings into focus the incentive cost of giving an agent a higher number of opportunities to

succeed.

The article is connected with the literature on delegation originating from Holmström

(1977, 1984). An important focus in this literature has been on how to incentivize an biased

agent with superior information to act in the principal’s interest. We highlight the fact that

delegation also allows us to learn about the agent’s ability. Recently, there has been quite a

few articles related to dynamic delegation - Hörner and Guo (2015), Lipnowski and Ramos

(2015), Li, Matouschek & Powell (2017) - however these are in a repeated game setting

and there is no learning component. An exception is Guo (2016). In her setting, the agent
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receives private information only once at the beginning of the game while in our setup the

agent receives private information multiple times over the course of the game.

This article is also related to the literature on assessing managerial ability originating from

Holmström (1999). The literature highlights that firms draw inferences about the manager’s

ability based on public signals. This in turn provides an incentive for the manager to take

actions to distort the public signals. However typically the managers take actions which try

and make them appear better than they are (or at least no worse than what they are)5.

In contrast, in our model, managers benefit from the possibility of making the principal

more pessimistic about his ability. In that respect, this is closer to the literature on belief

manipulation6 . The literature on belief manipulation has mostly focused on situations in

which agents have to apply (hidden) effort. In contrast, our paper suggests another source

- selecting bad projects - through which the agent might create a divergence between public

belief about his ability and his own private belief and earn a rent on the basis of that.

The rest of the article is organized as follows. In section 2, we describe the model setup

and solve a benchmark case with complete information. In section 3, we illustrate the basic

insights and tradeoffs by considering the optimal contract which allows for one and two trials.

In section 4, we derive the optimal contract for the general problem. In section 5, we present

comparative statics results. Section 6 discusses some extensions and empirical implications

and we conclude in section 7.

2 The Model

In this section, I describe the model setup and solve a benchmark case with complete infor-

mation.
5See for example Hermalin (1993), Holmström and Ricart i Costa (1986).
6See for example Bergemann and Hege (2005), Bhaskar (2012), Wolf (2017).
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2.1 Setup

There are two risk-neutral players: a (male) agent and a (female) principal. Both have a

common discount factor δ ∈ (0, 1). Time t = 0, 1, 2... is discrete with an infinite horizon.

Ability: The ability of the agent is persistent and is either high or low. Neither the principal

nor the agent knows the true ability - the initial common prior is that the agent is high ability

with probability α0 ∈ (0, 1)7. The agent’s ability can be assessed through performance in

projects.

Projects: Each period there are up to two types of projects available - “bad” and “good”.

A “bad” project fails regardless of the ability of the agent, whereas “good” project succeeds

with probability γ ∈ (0, 1) if the agent is of high ability and fails otherwise. In each period,

there is always a bad project available, whereas a good project is available with probability

p ∈ (0, 1). The availability of projects is independent of the agent’s ability8. The agent can

implement up to one project each period. If a good project becomes available in a specific

period and the agent chooses not to implement it that period, then the agent cannot imple-

ment that particular project in future periods either.

Payoffs: Following Zwiebel (1996), the agent gets a private benefit b > 0 per project imple-

mented.9 It costs the principal c > 0 to implement a project. Outside options per period for
7There are a few justifications for the common prior assumption. First, the agent’s assessment of ability

is based on past performance and hence is likely to be known to the principal. Second, the uncertainty
about agent’s ability might be interpreted as uncertainty about the quality of the match ,which is similarly
unknown to both the agent and the principal. Further, we note that although the analysis begins with a
common prior assumption, over the course of time, it is possible that beliefs about ability might diverge due
to asymmetric information.

8Thus one can interpret ability of the agent as corresponding to his ability to capitalize on opportunities
9The private benefit includes benefits such as publicity as well as learning in case of the entrepreneurship

example and also takes into account effort cost of implementing projects - thus one can interpret b as the
net benefit to the agent from implementing projects.
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both the principal and the agent are normalized to 0 each. The principal values successful

outcome at R > c.10

Information: In each period, only the agent observes if a good project is available. Given

the financing from the principal, the agent has a choice between implementing no project,

implementing a bad project or implementing a good project (if available). The principal can

observe if a project is chosen in a specific period and also what the outcome of the project

is. In particular, success in a project is immediately observed by both the principal and the

agent. The quality of the project chosen in case of failure of the project is not observed by

the principal (even ex post).

Learning: Not implementing a project provides no information regarding the ability of the

agent. Suppose the principal expects the agent to implement projects if and only if they

are good. In that case, failure leads to a reduction of the principal’s belief regarding the

ability of the agent. Let αk denote the probability that the agent is of high ability given k

past failures and no success. Then (assuming again that the agent only implements good

projects) Bayes’ law implies

αk =
(1− γ)kα0

(1− γ)kα0 + (1− α0)
. (1)

Success in a project reveals that the agent is of high ability since only high ability agents

can succeed.

We note that it is possible for the beliefs of the agent and the principal to diverge. In

particular, if an agent selects to implement a bad project, then his belief will be unchanged

following failure. However if the principal expected the agent to implement a project if and
10Since only high ability agent can achieve success, R summarizes the future surplus the principal gets

from interacting with a high ability agent.
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only if it was good and she sees the project fail, then she will reduce her belief regarding the

agent’s ability.

Contracts: We consider contracting at period zero with full commitment on part of the

principal. We restrict attention to contracts in which (i) the agent implements a project if

and only if it is good and (ii) payments are conditional only on the number of past failures.

Formally, a contract is given by (k,X) where k ∈ {0, 1, ...} is the maximum number of trials

the principal is willing to fund and X = (X0k, X1k, .., Xsk, ..Xk−1k) specifies the transfer 11

to be made to the agent. In particular, Xsk stands for the transfer to the agent conditional

on the agent succeeding after s failures and the contract allowing for a total of k failures.

We assume limited liability: Xsk cannot be negative. This is not the most general set of

contracts. However, the simplifying assumptions on the contract set are designed to bring

out in the simplest possible way what the basic economic tension is in the delegation and

learning problem. Once the basic tradeoff is clearly modeled, it is easier to explore the

robustness of the optimal contract to generalizations of the contract set.

One possible interpretation of the contracts under study is as follows. The agent has no

money of his own to fund projects. At the beginning of the game, the principal commits

to a line of credit up to an amount kc to be used for undertaking projects where k is a

non-negative integer and is a choice variable for the principal. This provides enough funds

to try k projects since each project requires c to be implemented. If the agent exhausts the

funding without obtaining a success, the game ends. The other contingency where the game

ends is when the first success is achieved and the agent is rewarded with a bonus following

the success.

Histories: There are two relevant histories to keep track of. One is the public history of
11An alternative interpretation for X is given in section 6.
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past failures, specifically the number of failures up to period t.12 The other is the agent’s

private history including the number of past failures up to t and the quality of projects

implemented up to t.13

Let Πk denote the principal’s expected payoff at time 0 from a contract which allows

for k trials and has the agent implement a project if and only if it is good. The principal’s

problem is to choose k and (Xsk)s=0,1,...k−1. at time 0 to maximize her expected payoff Πk.

The agent’s strategy at a given point in time is to choose which project (if any) to implement

that period as a function of his private history and the projects available at that period. Let

Vk(m, s) be the agent’s expected payoff after s failures, m of which were good projects, in a

k-trial contract14.

Figure 1 illustrates the game tree for the stage game when both good and bad projects

are available and there have been s failures in projects out of which m ≤ s were failures in

good projects. If s ≥ k, then the principal does not finance projects and hence the payoff

to both the principal and the agent is given by 0 each. If s < k, then the principal finances

the project. If the agent chooses not to implement a project, then both the principal and

the agent get 0 each and the number of failures in projects remains unchanged. If the agent

implements a bad project, then the agent gets b and the principal gets −c. The number of

projects which have failed is given by s+ 1, while the number of failures in good projects is

still given by m. If the agent implements a good project, then it can result in either success

or failure. In case the project fails, the agent gets b while the principal gets −c. The number
12Note that since the contract specifies payments only as function of number of past failures, it’s not

required to track the order of sequence of failures and non-implementation. This is without loss of generality
given the IID assumption regarding the availability of good projects.

13The agent’s private history also includes availability of projects in past periods, however this does not
affect payoff.

14If the principal expects the agent to implement a project iff it is good, then s failures corresponds to
the principal’s belief about the agent’s ability to be αs while m failures in good projects corresponds to the
agent’s belief about his ability to be αm. There is thus a one to one map between the number of failures
(m, s) and the beliefs (αm, αs).
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of projects that have failed equals s+ 1 while the number of good projects that have failed

is given by m + 1. Since the principal does not observe the quality of the project but only

observes failure, she cannot identify if the project implemented was good or bad. If the

good project succeeds, the principal pays the agent Xsk. Thus the agent’s payoff is given by

b+Xsk while the principal’s payoff is given by R−Xsk − c.

Figure 1: Tree for Stage Game
Notes : The above figure represents the stage game when both good and bad projects are
available and there have been s failures in projects out of which m ≤ s were failures in good
projects. P stands for the principal and A stands for the agent.

2.2 Complete Information Benchmark

In this subsection, we derive the optimal contract when the principal can observe the quality

of the projects available each period and write a contract which can include the quality. In
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this case, the principal implements a project if and only if it is good and keeps experimenting

until the point at which her belief falls below a cutoff level. We derive below this cutoff belief.

Let αk denote the belief regarding the agent upon observing k failures and zero successes.

Suppose that there is a good project available. Then if the principal permits the good project

to be implemented and stops experimenting if the project fails, her payoff is given by

αkγR− c.

In the above expression, αkγ refers to the probability of success in a good project given k

failures and zero successes in good projects and R is the payoff to the principal in the event

of success. Thus expected surplus from implementing a good project is given by αkγR and

c is the cost of implementing a project.

The principal should thus experiment as long as the above payoff is non-negative, that is

till the highest k such that

αkγR ≥ c.

Assumption 1: Experimentation is initially profitable in the absence of an agency problem:

α0γR ≥ c.

This assumption means that without the agency problem, the principal would be willing

to experiment at least once at the initial belief.
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3 The Special Case with at Most One or Two Trials

This section illustrates some basic insights and tradeoffs in the special case where first there

is only one trial and second where there may be up to two trials.

3.1 One Trial Contract

In this case, the agent gets only one shot at implementing a project. For the contract that

allows for one trial, we need to determine the optimal bonus X01 that incentivizes the agent

to implement the project if and only if the project is good. The incentive compatibility

condition for not implementing a project over choosing a bad project is given by

δV1(0, 0) ≥ b. (2)

The equation says that the payoff to the agent from not implementing a project has to be

greater than that of selecting the bad project. The payoff from not implementing a project

is given by δV1(0, 0). It refers to the observation that if the agent chooses to not implement

a project, then he gets 0 this period and the next period utility for the agent is still given by

V1(0, 0) since the the number of failures are unchanged if the agent selects not to implement

a project. If the agent selects the bad project, then he gets b this period but the project is

sure to fail and since the contract only allows for one trial, his continuation payoff is 0.

The incentive compatibility condition for choosing the good project if it is available is

given by

b+ α0γX01 ≥ max(δV1(0, 0), b). (3)

Given equation (2), we can simplify as
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b+ α0γX01 ≥ δV1(0, 0). (4)

The left side stands for the expected payoff to the agent if he selects a good project.

It consists of the current gain b that the agent makes if he implements a project and the

expected bonus in case of success. Since the project is good and the belief that the agent is of

high ability is given by α0, the probability of success is given by α0γ. In case of success, the

agent is rewarded by the bonus X01 as stated in the contract. The contract allows for only

one trial; hence if the agent fails, the principal chooses to stop experimenting in which case

the agent receives 0. The term on the right side refers to the payoff from not implementing

a project which is same as before.

The agent’s ex-ante value in such an incentive compatible contract is given by

V1(0, 0) = p(b+ α0γX01) + (1− p)δV1(0, 0)

=
p

1− δ(1− p)
(b+ α0γX01).

= θ(b+ α0γX01) (5)

where p denotes the probability a good project is available in a period and θ ≡ p
1−δ(1−p) .

Since both p and δ lie between 0 and 1, we get 0 < θ < 1.

We observe that incentive compatibility for the good project is always satisfied since

δ < 1 and the expected payoff from implementing a project is non-negative15. Hence we only

need to make sure that X01 is high enough so that incentive compatibility condition for the
15From equation (5), we obtain V1(0, 0) = θ(b + α0γX01). Inserting this in equation (4), the right hand

side equals δθ(b+ α0γX01) . Since 0 < δ, θ < 1, equation (4) is satisfied.
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bad project is satisfied. Plugging in the value of V1(0, 0) and solving for X01 we obtain,

X01 ≥
b(1− δ)
δα0γp

. (6)

The principal’s expected payoff from this contract is given by Π1 which satisfies

Π1 = θ[α0γ(R−X01)− c].

The term R−X01 represents the payoff to the principal in case of success while c stands

for the cost of implementing the project. Since the contract allows for only one failure, one

failure ends the experimentation. As the bonus payments enter negatively in the principal’s

profit, she won’t pay the agent more than required and hence inequality (4) is satisfied with

an equality. Thus we get

X01 =
b(1− δ)
δα0γp

. (7)

We thus observe that X01 is an increasing function of b and a decreasing function of δ, α0, γ, p

. The purpose of having X01 > 0 is to ensure that if the agent comes across a bad project,

the expected reward from foregoing on the bad project and waiting for a good project to

come along is high enough that he is willing to not implement the bad project. The cost of

passing up on the bad project at hand is the private benefit b. Hence higher is the b, greater

the incentive needs to be for the agent to pass up on that in the current period. Since the

agent has to wait till at least the next period to see if a good project comes along, the more

impatient an agent is, higher needs to be the bonus from succeeding in a good project. The

bonus is only paid out in the event of success in the good project and hence it is decreasing

in α0γ, the probability of success of the good project. Finally, the lower the value of p, the
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more the agent needs to wait for a good project to come along and hence the reward for

waiting has to be higher.

The corresponding expected payoff to the agent from accepting the contract is given by

V1(0, 0) =
b

δ
.

The principal should prefer to offer this contract over not experimenting at all if and only

if Π1 ≥ 0 which gives us:

α0γR ≥ c+
b(1− δ)
δp

.

Assumption 2:

α0γR > c+
b(1− δ)
δp

. (8)

This inequality says that the principal will want to experiment at least once even in the

second best.

3.2 Two Trials Contract

In this case, the agent gets at most two shots at implementing projects. We first consider

what happens in case the first trial results in failure. If the first trial fails, there is only

one more failure permitted in the contract. Hence the analysis is similar to the analysis for

one failure contract considered above. Since the contract requires the agent to implement a

project if and only if it is good and on path the belief of the agent is α1 after the first failure,
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we obtain

X12 ≥
b(1− δ)
δα1γp

. (9)

We observe that the bonus offered to incentivize the agent in the last opportunity has

to be higher in the contract with two trials than in the contract with one trial that is

X12 > X01. This is because the agent’s belief about his ability is lower and hence he needs

a higher incentive to wait for the good project.

In order to determine X02, we consider the incentive compatibility conditions prior to

first failure. The incentive compatibility condition for selecting the good project given 0

failures is now given by

b+ α0γX02 + (1− α0γ)δV2(1, 1) ≥ δV2(0, 0). (10)

Since the principal does not stop experimenting immediately after a failure but allows

the agent to continue to experimenting, the agent’s payoff upon failure is given by δV2(1, 1)

and not 0 as before.

The incentive compatibility condition for rejecting the bad project gives us

δV2(0, 0) ≥ b+ δV2(0, 1). (11)

Unlike the one failure contract, failure in a project in this case does not stop experimen-

tation. The agent does not update his beliefs about himself after the expected failure but

the principal’s belief declines to α1 (as implementing the bad project is "off path"; that is,

the principal was expecting the agent to implement only good projects). We note that even

if the agent deviates from the principal’s prescribed strategy after 0 failures to implement a

bad project, he will choose to implement a project iff good in the second trial. This follows
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from verifying that the two incentive compatibility conditions - (i) b + α0γX12 ≥ δV2(0, 1)

and (ii) δV2(0, 1) ≥ b are satisfied16. The agent’s value from the contract in such a case is

given by

V2(0, 1) = θ[b+ α0γX12]

The agent’s ex-ante value (on path) is given by

V2(0, 0) = θ[b+ α0γX02 + (1− α0γ)δV2(1, 1)].

Once again the incentive compatibility for the good project is satisfied since δ < 1 and

the expected payoff from implementing the project is non-negative. Thus we only need to

make sure that X02 is high enough so that incentive compatibility condition for the bad

project is satisfied. Plugging in the value of V2(0, 0) and solving for X02 we get,

X02 ≥
b

θα0γ
[
1

δ
− (1− α0γ)δθ2]︸ ︷︷ ︸+X12[1− δθ(1− γ)]︸ ︷︷ ︸

>0
>0

(12)

We thus observe that X02 is an increasing function of X12.

The principal’s expected payoff from offering a contract which allows for two trials is

given by Π2 which satisfies

Π2 = θ[α0γ(R−X02)− c]

+δθ2(1− α0γ)[α1γ(R−X12)− c].

Since both X02 and X12 enter negatively in the expression for expected payoff and X02

is increasing in X12, the principal will try to minimize these two as much as possible. Hence
16This is discussed in more detail in Section 4.
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both equations (7) and (10) hold with equality and we obtain,

X12 =
b(1− δ)
δα1γp

. (13)

X02 =
b(1− δ)
δα0γp

+
b(1− δ)
δα1γp

+ b. (14)

It’s useful to think about the individual terms in the above expression. The first term

plays a similar role as the term in equation (4) - it provides incentives to forego on the bad

project in favor of waiting for a good project to come along. However in equation (14), there

are now two additional terms - these refer to the fact that in the contract with two failures

there are additional benefits to selecting a bad project when there is another opportunity

still remaining. If the agent selects a bad project, he knows for sure that the game will not

end this period - since the project is sure to fail - and hence gives the agent an opportunity

to earn further rent. There are two sources of this additional rent. First, the agent gets to

implement another project which gives him a benefit of b > 0. Second, the agent has the

opportunity to gain an additional rent because his belief is higher than the belief which the

principal had in mind while designing the bonus for the next project - we can see this from

V2(0, 1) = θ[b+ α0γX12] = θ[b+
α0

α1

b(1− δ)
δp

] > θ[b+
b(1− δ)
δp

] = V2(1, 1).

We also see that X02 > X12 - that is the contract has to be front-loaded. While comparing

X02 and X12 we see that the agent is more pessimistic about his ability upon implementing

a good project and failing - hence he has to be possibly provided a greater incentive in order

to make sure he waits for the good project. On the other hand, the agent has to be provided
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additional incentives in the first attempt to compensate him to forego the possible rents from

taking up the second project as outlined in the previous paragraph. What X02 > X12 says is

that the second effect dominates and hence the contract is front-loaded. We note that this

contrasts with some of the existing results in the literature. For example, Halac, Kartik and

Liu (2016) found instances where contracts have bonuses which are increasing as the agent

gets more pessimistic. The main difference in our model is that the agent gets a benefit each

time a project is undertaken and hence the contract has to compensate the agent for the loss

in continuation value in order to incentivize him to implement only good projects.

It’s also useful to compare X02 with the bonus XV
02 that the principal would have to pay

to the agent in the scenario the principal could verify the quality of the project implemented

before giving permission to go ahead with the second trial and could commit to firing the

agent in case it was discovered that he had selected a bad project. In this case the the

bonus17 can be obtained as

XV
02 =

b(1− δ)
δα0γp

Thus if the principal could verify the project quality ex-post and commit to firing the

agent for selecting selecting the bad project, the contract becomes back-loaded that is XV
02 <

X12.

We also note that X02 > X01, that is increasing the number of trials implies that earlier

success have to be rewarded more in the contract which has higher number of trials. This

is because the agent has to be compensated for greater losses in rents in the contract with

higher number of trials.

If we compare Π2 with Π1, we see that the principal faces benefits and costs in moving
17This is also the bonus that the principal would pay to an agent if he can costlessly replace the agent

with another agent upon failure in a project. In this case though, ability is not agent-specific, but is more
about the quality of the idea that is being assessed through projects.
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from a contract with 1 trial to 2 trials. The change in the expected payoff can be decomposed

as:

Π2 − Π1 = δθ2(1− α0γ)[α1γ(R−X12)− c]︸ ︷︷ ︸
benefit

− θα0γ(X02 −X01)︸ ︷︷ ︸
cost

The additional benefit captures the scenario that the high ability agent might fail while

attempting a good project on the first attempt which happens with probability (1−α0γ) but

allows for the possibility that the agent succeeds on the second attempt. The cost reflects

the higher bonus that has to be paid to the agent.

If we compare it to the case with one failure we see that that the principal gets a lower

payoff if the agent succeeds in the first attempt since X02 > X01. Thus the main tradeoff

to the principal is increasing the number of experiments funded leads to more accurate

information about the ability of the agent but has to be paid for not only in terms of more

cost of experimentation but also in higher rents to the agent in case of earlier success.

4 Optimal Contract

In this section, we examine the properties of the optimal contract that incentivizes the agent

to implement the project if and only if it is a good project.

We can decompose the problem into a two step procedure: First, given a maximum num-

ber k of trials that the principal is willing to fund, what should the optimal bonus scheme

be in order for the agent to choose the project if and only if it is a good project? Having

found the optimal bonus scheme, we determine the number of trials the principal is willing

to fund.
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4.1 Optimal Bonus

Definition: Given a maximum number of trials k that the principal is willing to fund, we say

that the bonus scheme (Xsk)s=0,1...k−1 is incentive compatible if under such a bonus scheme

the agent chooses to implement projects if and only if they are good projects. We define an

optimal contract as a contract that is incentive compatible and maximizes the principal’s

expected payoff.

Let (Xsk)s=0,1...k−1 be a incentive compatible bonus scheme. Let Πs,k denote principal’s

expected payoff from such a contract when s < k failures and zero successes in good projects

have taken place. Then Πs,k satisfies the following the recurrence relation :

Πs,k = p[αsγ(R−Xs,k) + (1− αsγ)δΠs+1,k − c] + (1− p)δΠs,k

With probability p, a good project becomes available and is implemented. This leads to

an expected profit of αsγ(R−Xsk) + (1− αsγ)δΠs+1,k − c . Given that the bonus scheme is

incentive compatible, all the earlier failures were in good projects and hence the probability

that the agent is high ability is given by αs from equation (1). Thus the probability of success

in the good project is given by αsγ. In case of a success, the principal gets R − Xsk since

the contracts specifies Xsk as the bonus to be paid in such a situation. In case of a failure

which happens with probability (1 − αsγ), the future payoff is given by δΠs+1,k. Finally c

stands for the cost of implementing the project. With probability 1− p, the good project is

not available and thus a project is not implemented. Hence we move on to the next period

and the profit for the principal is summarized by δΠs,k.

The above recurrence relation can be further simplified to yield

Πs,k = θ[αsγ(R−Xsk) + (1− αsγ)δΠs+1,k − c]
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where θ ≡ p
1−δ(1−p) . Thus the overall expected profit from offering a contract which

tolerates k failures is given by Π0,k ≡ Πk where

Πk = θ[α0γ(R−X0k) + (1− α0γ)δΠ1,k − c]

= θ[α0γ(R−X0k)− c] + θ(1− α0γ)δΠ1,k

= θ[α0γ(R−X0k)− c] +

θ2δ(1− α0γ)(α1γ(R−X1k) + (1− α1γ)δΠ2,k − c)

= θ(α0γ(R−X0k)− c) +
k−1∑
s=1

θs+1δs(
s−1∏
m=0

(1− αmγ))(αsγ(R−Xsk)− c)

Given k, the principal’s profit maximization problem is to choose (Xsk)s=0,1,...,k−1and

(Vk(m, s))
s
m=0 to maximize Πk subject to the following constraints: for each s = 0, ..., k − 1,

b+ αmγXsk + (1− αmγ)δVk(m+ 1, s+ 1) ≥ δVk(m, s) (IC-G)

b+ δVk(m, s+ 1) ≤ δVk(m, s) (IC-B)

Xsk ≥ 0 (LL)

where Vk(m, s) is defined by:
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Vk(m, s) = max
1Gms,1BGms,1Bms,1Gms+1BGms≤1

{p[1Gms(b+ αmγXsk

+(1− αmγ)δVk(m+ 1, s+ 1))

+1BGms(1− 1Gms)(b+ δVk(m, s+ 1))

+(1− 1BGms)(1− 1Gms)δVk(m, s)]

+(1− p)[1Bms(b+ δVk(m, s+ 1))

+(1− 1Bms)δVk(m, s)]}

where 1Gms is an indicator function which takes value = 1 if the agent selects the good

project (after s public failures of projects, of which m were good) if it is available and 0

otherwise. Similarly 1BGms stands for the indicator function for the agent’s choice regarding

an implementation of bad project if a good project is available ((after s public failures of

projects, of which m were good) while 1Bms stands for the indicator function for the agent’s

choice regarding implementation of a bad project (after s public failures of projects, of which

m were good) if a good project is not available.

Our first result deals with the question of how should the principal set (Xsk) to maximize

the expected profit from such a contract.

Proposition 1: Suppose the principal’s optimal contract funds up to k trials. Then bonuses

(Xsk)s=0,1,...,k−1 in this contract are given by

Xsk = (k − 1− s)b+
k−1∑
m=s

b(1− δ)
δpγαm

.

Proof: See the appendix
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Sketch of the proof

The proof is divided into the following steps. Instead of the profit maximization problem,

we focus on the equivalent cost minimization problem.

Step One: We first consider a relaxed problem by restricting agent’s off path strategies to

have only one-period deviations - that is the agent can only deviate once (by either choosing

not to implement a project when a good project is available or by implementing a bad

project) but from then on will choose to implement projects if and only if they are good

projects. Since the bonus schemes are such that they act as incentives against all deviations,

it has to be true that they prevent the agent from these types of deviations. We can thus

write the relaxed problem as

min
(Xsk)

k−1
s=0

{θα0γX0k +
k−1∑
s=1

θs+1δs[
s−1∏
m=0

(1− αmγ)][αsγXsk]}

subject to for each s = 0, ..., k − 1,

b+ αsγXs + (1− αsγ)δV T
k (s+ 1, s+ 1) ≥ δV T

k (s, s) (IC-G-O-s)

b+ δV T
k (s, s+ 1) ≤ δV T

k (s, s) (IC-B-O-s)

Xsk ≥ 0 (LL)
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where

V T
k (s, s) = θ(b+ αsγXsk) +

k−1∑
m=s+1

θm+1−sδm−s[
m−1∏
n=s

(1− αnγ)][b+ αmγXmk]

and

V T
k (s, s+ 1) = θ(b+ αsγXs+1k) +

k−2∑
m=s+1

θm+1−sδm−s[
m−1∏
n=s

(1− αnγ)][b+ αmγXm+1k]

Step Two: We then show that IC-G-O-s are satisfied. To see this, we observe that V T
k (s, s)

can be rewritten as

V T
k (s, s) = θ(b+ αsγXs + (1− αsγ)δV T

k (s+ 1, s+ 1))

Thus we can rewrite the IC-G-O-s as

b+ αsγXs + (1− αsγ)δV T
k (s+ 1, s+ 1) ≥ δθ(b+ αsγXs + (1− αsγ)δV T

k (s+ 1, s+ 1))

which is always satisfied since b+αsγXs+(1−αsγ)δV T
k (s+1, s+1) > 0 and 0 < δ, θ < 1.

Step Three: Next, if the only off path strategies available to the agent are these one-period

deviations, then all the IC-B-O-s need to hold with equality, otherwise the principal can de-

crease bonuses without affecting incentives following s failures and before to increase profit18.

Step Four: Based on the IC-B-O-s holding with equality, we obtain a difference equation
18It is possible to decrease bonuses without violating limited liability conditions since one can show that

Xsk > 0, which follows from IC-B-O-s and induction - the details are discussed in the appendix.
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linking Xsk and Xs+1k:

Xsk =
b(1− δ)
δγαsp

+Xs+1k + b

along with the boundary condition:

Xk−1k =
b(1− δ)
δγαk−1p

This gives us a solution for Xsk as stated in the proposition.

Step Five: We show that the Xsk we found by restricting the agent’s off-path strategy

are enough to deter the agent from more complex off-path strategies involving multiple de-

viations. Intuitively, the contract in the relaxed problem ensured that the agent has no

incentives to deviate if never deviated. The agent’s private belief is either the same as the

public belief (if he deviates by not implementing a project when a good project is available)

or higher (if he deviates by selecting a bad project). Hence we can verify deviating is even

less attractive to the agent if he has deviated before.

Proposition 1 lends itself to the following two corollaries:

Corollary 1: Bonuses are front-loaded i.e X0k > X1k > ... > Xk−1k.

The intuition is that earlier bonuses need to compensate the agent for giving up the

rents that he could have got from future projects as well as rents due to the possibility of

divergence between the private belief of the agent and the belief based on public history.
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Corollary 2: Increasing the number of failures allowed increases the bonus needed to in-

centivize the agent at each stage: Xsk > Xsk′ for k > k′ for s = 0, 1...k′ − 1.

The intuition follows from observing that an increase in the number of trials implies that

the agent has an opportunity to get greater private benefits by implementing more projects

as well as earn higher rents by causing a greater divergence between public and private

beliefs. Thus the agent has to be compensated for a greater potential loss of continuation

rents for selecting good projects when there is an increase in number of maximum failures

allowed.

4.2 Optimal Number of Trials

Having found the optimal bonus scheme, we move on to examine the question of how should

the principal decide on the optimal number of trials. To understand the determinants, it’s

useful to decompose the impact on expected payoff of the principal as a result of a change

in the number of trials. The change in payoff for the principal if he decides to increase the

number of trials from k to k + 1 is given by

4Πk = θk+1δk[
k−1∏
m=0

(1− αmγ)][αkγ(R−Xkk+1)− c]

−
k∑
s=1

θsδs−1α0(1− γ)s−1γ(Xs−1 k+1 −Xs−1 k)

≡ MBSB
k −MCSB

k

We can decompose the total change in the expected payoff of the principal into two parts:

the “marginal benefit” and the “marginal cost”. We define and expand on the terms below.

Increasing the number of trials from k to k + 1 has two consequences for the principal’s

expected payoff - first, there is an additional opportunity to succeed in case the first k trials
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result in failure and second, the bonuses for success in the first k trials have to be altered as

a consequence of corollary 2.

Since the number of trials has gone up from k to k + 1, there is now an additional

opportunity to experiment. The “marginal benefit” refers to the impact on the expected

payoff due to the principal having one additional chance of experimentation, holding fixed

the bonus to be paid in case of success in the first k trials. We note that the additional trial

is of use only if the first k trials have resulted in failure. For k ≥ 1, the expected payoff from

the additional opportunity is given by

MBSB
k ≡ θk+1δk[

k−1∏
m=0

(1− αmγ)][αkγ(R−Xkk+1)− c]

We can decompose this expression into two parts -
∏k−1

m=0(1−αmγ) refers to the probabil-

ity of no success in the first k trials while θk+1δk[αkγ(R−Xkk+1)− c] refers to the expected

payoff for success in the k + 1th trial. MBSB
0 is given by θ[α0γ(R−X01)− c].

Lemma 1: The “marginal benefit” of experimentation is decreasing in the maximum num-

ber of failures tolerated by the principal, that is MBSB
k is a decreasing function of k.

Proof: See the appendix

The intuition is that not only does the new opportunity present itself much later (which

is reflected in the terms θk+1δk), but it is also less likely to present itself - the probability

is given by
∏k−1

m=0(1 − αmγ) = {1 − α0 + α0(1 − γ)k} - and also when it presents itself the

expected payoff (αkγ(R−Xkk+1)−c) is decreasing in k as well since the probability of success

αkγ is lower and the principal also needs to pay a higher bonusXkk+1 to incentivize the agent.
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The “marginal cost” captures the fact that increasing the number of trials permitted

results in increasing the bonus that has to be promised to the agent in case of success after

0, 1, ...k − 1 failures. This observation follows from corollary 2. The “marginal cost”19 for

k ≥ 1 is given by

MCSB
k ≡

k∑
s=1

θsδs−1α0(1− γ)s−1γ(Xs−1k+1 −Xs−1k)

In the above expression, α0(1− γ)s−1γ refers to the probability of success in the sth trial,

while θsδs−1(Xs−1k+1−Xs−1k) refers to (discounted) value of increased bonus. We also define

MCSB
0 ≡ 0.

Using the result for the optimal bonuses from proposition 1, we can rewrite the “marginal

cost” for an incentive compatible contract as

MCSB
k =

k∑
s=1

θsδs−1α0(1− γ)s−1γ(b+
b(1− δ)
δαkγp

)

Lemma 2: The “marginal cost” of experimentation is increasing in the maximum number

of failures tolerated by the principal, that is MCSB
k is increasing function of k.

Proof: See the appendix

The intuition is that a higher value of k implies a lower value of αk which results in a higher

increase in bonus to be paid in the event of earlier success as Xs−1k+1 −Xs−1k = b + b(1−δ)
δαkγp

as well as there being a higher probability of earlier success since
∑k

s=1 θ
sδs−1α0(1− γ)s−1γ

is increasing in k as well.
19One could decompose the effect on expected profit due to an increase in the number of trials in different

ways. However it is instructive for the analysis to have the cost of financing a project c be subtracted from
the “marginal benefit”, as opposed to including it as part of “marginal cost”.

31



Once we have the decomposition of changes in expected payoff of the principal as a result

of changing the number of trials allowed, we can characterize the optimal number of trials

that the principal will optimally allow. The change in expected payoff due to a change in the

maximum number of trials can be viewed as the difference of the “marginal benefit” and the

“marginal cost”. The change in expected payoff is positive as long as the “marginal benefit”

exceeds the “marginal cost” and thus the principal should choose the largest number of trial

for which the “marginal benefit” exceeds the “marginal cost”. This is also illustrated in Figure

2 below.

Proposition 2: The optimal number of trials is unique and given by the highest k for which

MBSB
k ≥MCSB

k

We can also compare the optimal number of trials in the complete information benchmark

and the second best. In the complete information case, there is no bonus to be paid and

hence the “marginal cost” as defined above equals 0 for any number of trials decided upon by

the principal20. We thus have MCCI
k = 0 for any k. The “marginal benefit” of an additional

trial in the complete information benchmark is given by

MBCI
k ≡ θk+1δk[

k−1∏
m=0

(1− αmγ)][αkγR− c]

The “marginal benefit” is higher in the complete information benchmark as compared to

the second best. Hence the principal should experiment more in the complete information as

compared to the situation in which the agent has to be incentivized through bonuses. This
20Recall that the cost of financing a project c is subtracted from the marginal benefit in the decomposition

described above.
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discussion is summarized in the following proposition.

Proposition 3: The second best allows for an inefficiently low number of trials compared

to the complete information benchmark.

Figure 2: Optimal number of trials
Notes : MBCI

K and MBSB
K stand for “marginal benefit” for the complete information and

second best cases respectively; MCCI
K and MCSB

K stand for “marginal cost” for the complete
information and second best cases respectively; KCI and KSB denote the optimal number of
trials in the complete information and second best cases respectively and K stands for the
number of trials.
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5 Comparative Statics

In this section, we provide comparative statics results on the number of trials and the prin-

cipal’s expected payoff as a function of parameters.

Proposition 4: The principal’s second best expected payoff as well as the optimal number

of trials are increasing in R and α0 and decreasing in c.

Comparative statics with respect to α0

To understand how a change in α0 impacts the optimal number of trials, we look at how

it impacts the MBSB
k and MCSB

k . We note that MBSB
k is an increasing function of α0

(all proofs are in the appendix) while it is possible for MCSB
k to be either an increasing or

decreasing function α0. The impact on the “marginal cost” is driven through two channels

- holding fixed the number of trials - an increase in α0 leads to a reduction in bonus paid

when success happens after a specific number of failures. However it is also more likely that

the agent succeeds earlier, which combined with the front-loading of bonuses imply that the

principal could end up paying more. Hence the impact on MCSB
k is ambiguous. Thus it

might seem possible that as a result of increase in α0, the increase in “marginal cost” is

so high that the principal might end up reducing the number of experiments he wants to

perform. However as shown in the Appendix, an increase in the prior is always leads to an

increase in the optimal number of trials.

The effect on expected payoff is unambiguous as well - holding fixed the number of trials,

it can be shown that expected payoff of the principal increases as α0 increases. Since the

principal is free to vary the number of trials (which includes the option of not changing the

number of trials), her expected payoff is going to be higher in situations when there is an

increase in α0.
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Comparative statics with respect to c:

An increase in c leads to a reduction in the “marginal benefit” but has no effect on “marginal

cost”. Hence the number of trials permitted is going to be weakly lower. Holding fixed the

number of trials, expected payoff is decreasing in c and hence an increase in c leads to a

reduction in expected payoff.

Comparative statics with respect to R:

An increase in R leads to a increase in the “marginal benefit” but has no effect on “marginal

cost”. Hence the number of trials permitted is going to be weakly higher. Expected payoff

is going to increase following an argument similar to that for the α0 case.

6 Discussion

6.1 Connecting Predictions with Empirics

The model developed can be applied to venture capital industry. We can view Xsk as a

measure of cash-flow rights21 for the entrepreneur upon success. Corollary 1 suggests that

the cash-flow rights for the entrepreneurs are a decreasing function of the number of past

failures. Kaplan and Strömberg (2003) find evidence that founders’ cash flow rights decline

over financing rounds and increase with firm performance. They suggest that the increase

in VC cash flow rights over financing rounds is consistent with the VC demanding more

equity as compensation for providing additional funding. Our model provides an alternative

explanation based on incentive theory for reasons why founders’ cash-flow rights decline over

financing rounds as well as when firm’s performance becomes worse.

Our model also has some implications for the structure of anti-dilution provisions which
21Cash-flow rights for entrepreneurs are defined as the fraction of a portfolio company’s equity value that

entrepreneurs have a claim to.
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protect previous investors during “down rounds”. 22 Anti-dilution provisions are quite com-

mon ( see for e.g., Kaplan and Strömberg 2003; Gompers, Gornall, Kaplan, and Strebulaev

2019) and are meant to protect the investors against future financing rounds at a lower

valuation than the valuation of the current (protected) round. Typically these come at the

cost of reduced equity shares for the founders during down rounds and are often associated

with loss of motivation on part of the founders. One can interpret the optimal bonuses

identified in proposition 1 as a measure of the maximum amount of equity dilution for the

entrepreneurs per each round that is consistent with still keeping entrepreneurs incentivized

to act in the investor’s interest.

The result that an increase in the prior about the entrepreneur’s ability is associated

with greater financing is consistent with the findings in the empirical literature on venture

capital financing which suggests that entrepreneurs who have succeeded in the past are likely

to get better deals (Gompers, Kovner, Lerner and Scharfstein 2010). The empirical evidence

regarding the effect of c on financing of experimentation is mixed. Recent research (Kerr,

Nanda and Rhodes-Kropf 2014; Ewens, Nanda, and Rhodes-Kropf forthcoming) suggests

that the main impact of a reduction in c has been in increasing the number of entrepreneurs

financed. However investors have reduced the amount of funding to individual entrepreneurs

at the initial stage and now wait for more information about future prospects of the invest-

ment before committing more resources.

6.2 Non-Monetary Rewards

Our model has so far interpreted X as monetary payments made from the principal to

the agent. However in a lot of settings, especially within organizations, ability to exchange

money is often limited23. Similarly, founders are often rewarded for success not via monetary
22A down round is defined as a financing round with a lower share price than the previous round.
23The restriction on the use of monetary rewards is a common feature in the delegation literature.
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bonuses or cash flow rights but via greater control rights. To capture this in our model, we

can also interpret X in our model as promised continuation utilities instead of monetary

bonuses. Let f(X) denote the cost to the principal of providing continuation utility X to

the agent. Thus now success after s failures results in the agent receiving Xsk as before but

the principal’s payoff is given by R−f(Xsk). If we assume that f(X) is an increasing convex

function of X, then the expression obtained for Xsk in proposition 1 remains unchanged.

Further the results for the optimal trials as well as the comparative statics results too remain

qualitatively similar. Thus our model can be widely applied to settings even where monetary

rewards are not available.

6.3 Private Observability and Disclosure

In our model, success in a project was immediately observed by the principal. Suppose

instead that the outcome in a project is privately observed by the agent but can be verifiably

disclosed. However if success is not immediately disclosed, then they are lost. Further,

assume that the principal’s payoff from project success obtains here only when the agent

discloses it. Then one question that might be of interest is under the optimal contract found

above, does the agent have enough incentive to disclose the success? The answer is yes, and

one can see it in the context of the two trial example. Suppose the agent implements the

first trial in period t and obtains a success. In case he reveals the success, he gets a payoff

of b+X02. However, if he chooses to hide the success, then he moves on to the second trial.

Having received success, the agent knows that he is a high ability type for sure while the

belief about his ability based on public history is given by α1. Hence following the logic

for the two trial case, he will indeed choose to wait for the good project to come before

choosing to implement a project. His payoff in this case is given by b + θ(b + γX12). Since
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X02 > X12 + b, we obtain

b+X02 > b+ b+X12

> b+ θ(b+ γX12).

Hence the agent will choose to disclose success as soon as he obtains one.

7 Conclusion

This article studied a dynamic principal-agent model for experimentation in which the agent

is financed to work on projects and the principal learns about the agent’s ability through

observing his performances in the projects. Performance also depends on the quality of

the projects implemented; this quality is private information for the agent who is biased

towards implementation. We identified the sources of rents received by the agent in this

setting and showed that the optimal bonus structure has payments for success decreasing in

the number of past failures. The optimal amount of funding to be made available for the

agent for implementing projects is determined by comparing the benefits of higher number

of opportunities, which reduces the probability that the agent was of high ability but failed

due to a lack of sufficient opportunities, and the higher rents to be paid to the agent as a

consequence of increasing the number of opportunities.

There are some questions related to the issues analyzed in the article that may be of

interest for future research. One possibility is to analyze more general reward structures,

for instance by allowing the principal to contract on a richer set of variables such as time or

periods in which no project is implemented. Another interesting question to study is what

happens in the absence of commitment power on behalf of the principal. Finally, it could also

be interesting to study the dynamics of a multi-stage relationship where each stage requires
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a success - in which case performance in a stage has implications for the incentive structure

in later stages. These remain for future research.
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Appendix: Proofs

Proof of Proposition 1:

Fix k, the maximum number of failures permitted. We are interested in characterizing the

bonus scheme (Xsk)s=0,1,...k−1 that maximizes the principal’s profit and also ensures that the

agent chooses to implement the project if and only if it is a good project.

The proof is divided into the following steps. We first study a relaxed problem by re-

stricting the agent’s off path strategies to have only one deviation - that is the agent can only

deviate once but from then on will choose to implement projects if and only if they are good

projects. Since the bonus contracts are such that they act as incentives to all deviations,
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it has to be true that they prevent the agent from such deviations. We then show that if

the only off path strategies available to the agent are these deviations, then the incentive

compatibility condition for the bad projects have to hold with equality, otherwise the prin-

cipal can change bonuses to increase profit. Based on that, we obtain a difference equation

linking Xsk and Xs+1k as well as a boundary solution for Xk−1k. This gives us a solution for

Xsk as stated in the proposition. We finally show that the Xsk we found by restricting the

agent’s off-path strategy to one deviations are enough to deter the agent from more complex

off-path strategies involving multiple deviations.

Principal’s problem

The principal’s expected profit under an incentive compatible contract that has the agent

implementing project if and only if it is a good project is given by

Πk = θ[α0γ(R−X0k)− c] +
k−1∑
s=1

θs+1δs{
s−1∏
m=0

(1− αmγ}{αsγ(R−Xsk)− c}

We see in the above expression that the each of the Xsk enter negatively in the principal’s

profit - hence if the principal can reduce any Xsk without violating the limited liability or

any of the incentive compatibility constraints she would do so.

. The principal’s problem is to chose (Xsk)s=0,1...,k−1 and (Vk(m, s))m=0,1..s;s=0,1..k−1 to

maximize profit subject to the incentive compatibility conditions and the limited liability.

This is equivalent to the following cost minimization problem:

min
(Xsk)

k−1
s=0 ,(Vk(m,s))m=0,1..s;s=0,1..k−1

θα0γX0,k +
k−1∑
s=1

θs+1δs(
s−1∏
m=0

(1− αmγ)(αsγXsk)
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subject to incentive compatibility for good projects (IC-G)

b+ αmγVk(m, s) + (1− αmγ)δVk(m+ 1, s+ 1) ≥ δVk(m, s)

incentive compatibility for bad projects (IC-B)

δVk(m, s) ≥ b+ δVk(m, s+ 1)

and limited liability (LL)

Xsk ≥ 0

and Vk(m, s) is defined by:

Vk(m, s) = max
1Gms,1BGms,1Bms,1Gms+1BGms≤1

{p[1Gms(b+ αmγXsk

+(1− αmγ)δVk(m+ 1, s+ 1))

+1BGms(1− 1Gms)(b+ δVk(m, s+ 1))

+(1− 1BGms)(1− 1Gms)δVk(m, s)]

+(1− p)[1Bms(b+ δVk(m, s+ 1))

+(1− 1Bms)δVk(m, s)]}

where 1Gms is an indicator function which takes value = 1 if the agent selects the good

project if it is available and 0 otherwise. Similarly 1BGms stands for the indicator function

for the agent’s choice regarding bad projects if a good project is available while 1Bms stands

for the indicator function for the agent’s choice regarding bad projects if a good project is
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not available.

Suppose the number of public failures is s out of which m failures were in good projects.

We define V T
k (m, s) as the expected profit of the agent if he implements the project if and

only if it is a good project from then on.

Then V T
k (m,m) satisfies the following recurrence relation:

V T
k (m,m) = p(b+ αmγXmk + (1− αmγ)δV T

k (m+ 1,m+ 1)) + (1− p)δV T
k (m,m)

= θ(b+ αmγXmk + (1− αmγ)δV T
k (m+ 1,m+ 1))

= θ(b+ αmγXmk) +
k−1∑

y=m+1

θy+1−mδy−m[

y−1∏
n=m

(1− αnγ)][b+ αyγXyk]

We can similarly get an expression for V T (m,m+ 1) which is given by

V T
k (m,m+ 1) = p(b+ αmγXm+1k + (1− αmγ)δV T

k (m+ 1,m+ 2)) + (1− p)δV T
k (m,m+ 1)

= θ(b+ αmγXm+1k + (1− αmγ)δV T
k (m+ 1,m+ 2))

= θ(b+ αmγXm+1k) +
k−2∑

y=m+1

θy+1−mδy−m[

y−1∏
n=m

(1− αnγ)][b+ αyγXy+1k]

Restriction to one-period deviations:

We start out by restricting the agent to one-period deviations. That is only once will

he deviate from the principal’s prescribed strategy and from then on he will select the to

implement the project if and only if it is a good project. Since the agent is restricted to one-

period deviations, the incentive compatibility constraints are that for each of s = 0, 1...k− 1

the following inequalities need to hold true.
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b+ αsγXsk + (1− αsγ)δV T
k (s+ 1, s+ 1) ≥ δV T

k (s, s) (IC-G-O-s)

b+ δV T
k (s, s+ 1) ≤ δV T

k (s, s) (IC-B-O-s)

The top inequality (IC-G-O-s) says that the agent prefers to implement a good project

if a good project is available. The bottom inequality (henceforth referred to IC-B-O-s) says

the payoff from not implementing a project is greater than implementing a bad project.

IC-G-O-s is always satisfied

We first note that the incentive compatibility condition for the good project is always satis-

fied. To see this, we observe that

δV T
k (s, s) = δθ(b+ αsγXsk + (1− αsγ)δV T

k (s+ 1, s+ 1))

< (b+ αsγXsk + (1− αsγ)δV T
k (s+ 1, s+ 1))

since 0 < δ, θ < 1.

Xsk > 0 for all s

We next observe that Xsk > 0 for all s. To show this we use a induction argument. That

is, we start by showing that this is true for Xk−1k > 0 and Xk−2k > 0 and then show that if
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Xm+1k > 0, then Xmk > 0.

The incentive compatibility condition for the bad project when beliefs are αk−1 is given

by

δV T
k (k − 1, k − 1) ≥ b

However we note that

V T
k (k − 1, k − 1) = θ(b+ αk−1γXk−1k)

Hence we get

Xk−1k ≥
b(1− δ)
δαk−1γp

> 0.

Consider s = k − 2. The incentive compatibility condition for the bad project when

beliefs are αk−1 is given by

δV T
k (k − 2, k − 2) ≥ b+ δV T

k (k − 2, k − 1)

⇒ V T
k (k − 2, k − 2)− V T

k (k − 2, k − 1) ≥ b

δ

Using the expressions for V T (m,m) and V T (m,m+1), the LHS can be simplified to give

V T
k (k − 2, k − 2)− V T

k (k − 2, k − 1) = θ{αk−2γ(Xk−2k −Xk−1k)}

+θ2δ(1− αk−2γ){b+ αk−1γXk−1k}

46



This allows us to obtain

θαk−2γXk−2k ≥ [
b

δ
− θ2δ(1− αk−2γ)b] + θαk−2γXk−1k − θ2δ(1− αk−2γ)αk−1γXk−1k

= b[
1

δ
− θ2δ(1− αk−2γ)] + θαk−2γXk−1k[1− θδ(1− γ)]

> 0

where the second line follows from using Bayes’ rule on αk−2. The third line follows from

observing that each of b > 0, 1
δ
− θ2δ(1− αk−2γ) > 0 and θαk−2γXk−1k[1− θδ(1− γ)] > 0 .

General induction step: Assume that each of Xk−1k, Xk−2k...Xm+1k > 0. We now show

that this implies Xmk > 0. The incentive compatibility condition for bad projects when

beliefs are αs is given by

δV T
k (s, s) ≥ b+ δV T

k (s, s+ 1)

We can follow similar steps as above and show that

V T
k (s, s)− V T

k (s, s+ 1) = θαsγXsk +Xs+1k[θ
2δ(1− αsγ)αs+1γ − θαsγ] +

+
k−1∑

m=s+2

AmXmk +

θk−sδk−s−1(1− αsγ)(1− αs+1γ)...(1− αk−2γ)αk−1γb
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Here Am is the coefficient for Xm and is given by

Am = θm−s+1δm−s{(1− αsγ)(1− αs+1γ)...(1− αm−1γ)αmγ

−θm−sδm−s−1{(1− αsγ)(1− αs+1γ)...(1− αm−2γ)αm−1γ

= θm−s+1δm−s{(1− αsγ)(1− αs+1γ)...(1− αm−2γ)αm−1(1− γ)γ

−θm−sδm−s−1{(1− αsγ)(1− αs+1γ)...(1− αm−2γ)αm−1γ

= θm−sδm−s−1{(1− αsγ)(1− αs+1γ)...(1− αm−2γ)αm−1γ(θδ(1− γ)− 1)

< 0

Thus we get that

θαsγXsk ≥ b[
1

δ
− θk−sδk−s−1(1− αsγ)(1− αs+1γ)...(1− αk−2γ)αk−1γb]

+Xs+1kθαsγ[1− θδ(1− γ)] +
k−1∑

m=s+2

(−Am)Xmk

> 0

where the last equality follows from the observation that b > 0, Xm+1k, ...Xk−1k > 0 (from

the induction step) as well as the coefficients on b,Xs+1k....Xk−1k are all positive. Hence we

get that Xsk > 0.

All IC-B-O-s hold with equality

We now argue that all IC-B-OS need to hold with equality.

The argument is by contradiction. Let s be the first instance whereby the inequality is
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strict that is,

δV T
k (s, s) > b+ δV T

k (s, s+ 1)

and

δV T
k (m,m) = b+ δV T

k (m,m+ 1)

for all 0 ≤ m < s.

Rewrite using the definition of V T
k (m,m) and V T

k (m,m+ 1)

δV T
k (s, s) > b+ δV T

k (s, s+ 1)

as

θ(b+ αsγXsk + (1− αsγ)δV T
k (s+ 1, s+ 1)) > b+ δV T

k (s, s+ 1)

We observe that neither V T
k (s + 1, s + 1) nor V T

k (s, s + 1) depend on Xsk. Hence it is

possible to reduce Xsk by a small amount and still have the inequality holding. Since the

principal’s profit is decreasing in Xsk, such an adjustment increases the principal’s profit and

hence it contradicts Xsk being a part of the optimal bonus structure.

It remains to argue that none of the other constraints are violated as a result of this

change in Xsk. we observe that the expressions for V T
k (m,m) as well as V T

k (m,m + 1) are

not dependent on Xsk where m > s. Hence changing Xsk has no impact on any of the

inequalities for s+ 1, s+ 2...k − 1.

What about the incentive constraints for m < s? We know that for all such m the
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following relation holds.

δV T
k (m,m) = b+ δV T

k (m,m+ 1)

Reducing Xs by ε decreases δV T
k (m,m) by ε{θs−mδs−m−1(1−αmγ)...(1−αs−1γ)αsγ while

decreases δV T
k (m,m+ 1) by ε{θs−m−1δs−m−2(1− αmγ)...(1− αs−2γ)αs−1γ. Observe that

(1− αs−1γ)αs = (1− γ)αs−1

and hence

(1− αmγ)...(1− αs−1γ)αsγ = (1− αmγ)...(1− αs−2γ)αs−1γ(1− γ).

Thus the fall in δV T
k (m,m) is smaller than the δV T

k (m,m+ 1) and hence the incentive com-

patibility constraint for bad project continues to hold.

Recurrence relation:

We have shown that all the IC-B–O-s need to hold with equality. We now prove the following

recurrence relation:

Xsk =
b(1− δ)
δγαsp

+Xs+1k + b

along with the boundary condition:

Xk−1k =
b(1− δ)
δγαk−1p
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The IC-B-O-k − 1 gives us

δV T
k (k − 1, k − 1) = b

⇒ θδ(b+ αk−1γXk−1,k) = b

⇒ pδ(b+ αk−1γXk−1,k) = b(1− δ(1− p)

Simplifying we get,

Xk−1k =
b(1− δ)
δγαk−1p

.

To prove the recurrence relation we use induction on s.

For s = k − 2, the IC-B-OS gives us

δV T
k (k − 2, k − 2) = b+ δV T

k (k − 2, k − 1)

This can be rewritten as

δp(b+ αk−2γXk−2 + (1− αk−2γ)δV T
k (k − 1, k − 1)) = b(1− δ + δp) +

δV T
k (k − 2, k − 1)((1− δ + δp)

To simplify the above expression, we observe

V T
k (k − 2, k − 1)(1− δ + δp) = p(b+ αk−2γXk−1k)

and the IC-B-O-k − 1 gives us

δV T
k (k − 1, k − 1) = b
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Thus we get,

δpb+ δpαk−2γXk−2k = b(1− δ + δp) + δp(b+ αk−1γXk−1k)

−δp(1− αk−2γ)b

which gives us

Xk−2k =
b(1− δ)
δpγαk−2

+Xk−1k + b

which verifies the recurrence equation above for s = k − 2.

We now assume that the recurrence relation holds for s+ 1, s+ 2..., k− 2, k− 1 and show

that it holds for Xsk as well.

The IC-B-O-s gives us

δV T
k (s, s) = b+ δV T

k (s, s+ 1)

We observe that

V T
k (s, s) = θ(b+ αsγXsk + (1− αsγ)δV T

k (s+ 1, s+ 1))

Hence

δθ(b+ αsγXsk + (1− αsγ)δV T
k (s+ 1, s+ 1)) = b+ δV T

k (s, s+ 1)

Multiplying throughout by 1− δ + δp and simplifying we get,
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δpαsγXsk = b(1− δ) + (1− δ + δp)δV T
k (s, s+ 1)

−δ2p(1− αsγ)V T
k (s+ 1, s+ 1)

We see that

(1− δ + δp)V T
k (s, s+ 1) = p[b+ αsγXs+1k

+p(1− αsγ)δV T
k (s+ 1, s+ 2)]

Inserting this in the above equation we get,

δpαsγXsk = b(1− δ) + δ[pb+ pαsγXs+1k +

+p(1− αsγ)(δV T
k (s+ 1, s+ 2)− δV T

k (s+ 1, s+ 1))]

We know that

δV T
k (s+ 1, s+ 1) = b+ δV T

k (s+ 1, s+ 2)

This gives us

δpαsγXsk = b(1− δ) + δ[pb+ pαsγXs+1k

−p(1− αsγ)b]

= b(1− δ) + δpαsγ[Xs+1k + b]
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which gives us

Xsk =
b(1− δ)
δpαsγ

+Xs+1k + b

which proves the recurrence relation.

Deriving the formula stated in the proposition

We thus see that

Xsk =
b(1− δ)
δpαsγ

+Xs+1k + b

=
b(1− δ)
δpαsγ

+
b(1− δ)
δpαs+1γ

+Xs+2k + b+ b

= (k − 1− s)b+
k−1∑
m=s

b(1− δ)
δpγαm

.

Showing this is sufficient to deter more complex off path strategies for the agent

We now verify that (Xsk)s=0,1..k−1 we found above is sufficient to guarantee that the agent

won’t want to deviate from the prescribed strategy even if he had access to more complex

strategies than one deviations.

The idea is to use induction to show that (Xsk)s=0,1..k−1 is enough to prevent the agent

from taking up bad projects regardless of the beliefs of the agent and the principal - that is

we show that

δVk(m, s) ≥ b+ δVk(m, s+ 1).

where m = 0, 1...s and s = 0, 1...k − 1.
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Note that it suffices to make sure that the incentive compatibility condition for the bad

project holds since in that case, there is no gain to choosing not to implement a project when

the project available is good as in the next period the agent’s payoff is going to be the same

as the previous period but now discounted.

Fix s = k − 1. We want to show that for m = 0, 1...k − 1

δVk(m, k − 1) ≥ b.

One possible strategy for the agent is that he selects not to implement a project if the

project available is bad and implement the good project if it is available. Since Vk(m, k− 1)

is the maximum payoff possible, it has to be true that Vk(m, k − 1) gives a weakly higher

payoff than following the above strategy that is

δVk(m, k − 1) ≥ δθ(b+ αmγXk−1k)

Since m ≤ k − 1, we get that αm ≥ αk−1 and hence

δVk(m, k − 1) ≥ δθ(b+ αk−1γXk−1k)

= δθ(b+ αk−1γ
b(1− δ)
δαk−1γp

)

= δθb(1 +
(1− δ)
δp

)

= δθb
1− δ + δp

δp

= b

where the last line follows from noting θ ≡ p
1−δ(1−p) .
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Fix s = k − 2. We want to show that for m = 0, 1...k − 2

δVk(m, k − 2) ≥ b+ δVk(m, k − 1).

To reduce notation, we are going to refer to Vk(m, k − 2) ≡ Vm,k−2 and so on for the

remaining part of this proof. One possible strategy for the agent is that he selects the safe

project if the risky project is bad and the risky project if it is a good project. Since Vm,k−2

is the maximum payoff possible, it has to be true that Vm,k−2 gives a weakly higher payoff

than following the above strategy that is

Vm,k−2 ≥ θ(b+ αmγXk−2k + (1− αmγ)δVm+1,k−1).

Hence it is enough to show that

δ(b+ αmγXk−2k + (1− αmγ)δVm+1,k−1) ≥
1

θ
(b+ δVm,k−1)

Simplifying the expression we get,

δαmγXk−2k + (1− αmγ)δ2Vm+1,k−1 ≥
b

θ
− δb+

δ

θ
Vm,k−1

We know that

Xk−2k =
b(1− δ)
δpγαk−2

+Xk−1k + b

and

Vm,k−1 = θ(b+ αmγXk−1k)
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Using the above two equalities to simplify the previous inequality

δαmγXk−2k + (1− αmγ)δ2Vm+1,k−1 ≥
b

θ
− δb+

δ

θ
Vm,k−1

which is the same as

αm
αk−2

b(1− δ)
p

+ δαmγb+ (1− αmγ)δ2Vm+1,k−1 ≥
b

θ

which can be further simplified to yield

b(1− δ)
p

[
αm
αk−2

− 1]− δb(1− αmγ) + (1− αmγ)δ2Vm+1,k−1 ≥ 0

which gives us

b(1− δ)
p

[
αm
αk−2

− 1] + δ(1− αmγ)[δVm+1,k−1 − b] ≥ 0

But m ≤ k − 2 which gives us αm ≥ αk−2 and we also get from the previous step that

δVm+1,k−1 − b ≥ 0 which verifies that

b(1− δ)
p

[
αm
αk−2

− 1] + δ(1− αmγ)[δVm+1,k−1 − b] ≥ 0

and hence

δV (m, k − 2) ≥ b+ δV (m, k − 1).
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We now want to show that if for all m = 0, 1...r and r = s+ 1, s+ 2...k − 1

δV (m, r) ≥ b+ δV (m, r + 1).

then the following relation holds for all m = 0, 1....s:

δV (m, s) ≥ b+ δV (m, s+ 1).

We proceed similarly as before. We know that

Vm,s ≥ θ(b+ αmγXs + (1− αmγ)δVm+1,s+1).

Hence it is enough to show that

δ(b+ αmγXs + (1− αmγ)δVm+1,s+1) ≥
1

θ
(b+ δVm,k−1)

which is the same as showing

δαmγXsk + (1− αmγ)δ2Vm+1,s+1 ≥
b

θ
− δb+

δ

θ
Vm,s+1

We can use the induction assumption to get

Vm,s+1 = θ(b+ αmγXsk + (1− αmγ)Vm+1,s+2)

and also

Xsk = Xs+1k +
b(1− δ)
δαsγp

+ b
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to simplify the above inequality as

b(1− δ)
p

[
αm
αs
− 1] + δ(1− αmγ)[δVm+1,s+1 − b− δVm+1,s+2] ≥ 0

We get αm

αs
−1 ≥ 0 since m ≤ s and also δVm+1,s+1−b−δVm+1,s+2 > 0 from the induction

assumption. Hence we have verified that indeed

b(1− δ)
p

[
αm
αs
− 1] + δ(1− αmγ)[δVm+1,s+1 − b− δVm+1,s+2] ≥ 0

and this concludes the induction argument.

Proof of Lemma 1

The expression for MBSB
k is given by

MBSB
k = θk+1δk[

k−1∏
m=0

(1− αmγ)][αkγ(R−Xkk+1)− c]

The lemma follows from observing that each of the terms above are decreasing in k. We

note that δ as well as θ lie between 0 and 1. Hence θk+1 and δk are both decreasing in k.

Second, since (1− αiγ) lies between 0 and 1, the product

k−1∏
m=0

(1− αmγ)

also lies in between 0 and 1 and hence increasing k multiplies this with a term which is

between 0 and 1 and thus reduces it further.

From Bayes’ rule we get,

αk =
(1− γ)kα0

(1− γ)kα0 + (1− α0)
.
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and thus αk is a decreasing function of k.

Finally

−Xkk+1 = −b(1− δ)
δγαkp

is also decreasing in k since αk is decreasing in k.

Proof of Lemma 2

The expression for “marginal cost” is given as

MCSB
k =

k∑
s=1

θsδs−1[α0(1− γ)s−1γ(b+
b(1− δ)
δαkγp

)]

We observe that

θsδs−1[α0(1− γ)s−1γ(b+
b(1− δ)
δαkγp

)]

is positive and is also increasing in k since αk is decreasing in k. Hence increasing k leads

to an increase in the marginal cost - first, each of the terms above increase due to αk being a

decreasing function of k and second, a positive term gets added since we are summing from

1 to k.

Proof of Proposition 2

We see that

4Πk = θk+1δk[
k−1∏
m=0

(1− αmγ)][αkγ(R−Xk,k+1)− c]

+
k∑
s=1

θsδs−1α0(1− γ)s−1γ(Xs−1,k −Xs−1,k+1)
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Using the definitions of marginal benefit and marginal cost as defined in the text, we can

see that this can be written as

4Πk ≡ MBSB
k −MCSB

k

Lemma 1 says thatMBSB
k is decreasing in k while lemma 2 says thatMCSB

k is increasing

in k. Thus we get that 4Πk is decreasing in k.

As we increase k, αkγ(R −Xkk+1)− c becomes negative for some finite k which implies

that the “marginal benefit” becomes negative for some finite k. The “marginal cost” on

the other hand is always positive and is strictly increasing. Assumption 2 guaranteed that

MBSB
0 > 0 = MCSB

0 which suggested that some experimentation is optimal in the second

best. As we increase k, there exists a value of k, say k∗ for which MBSB
k∗ ≥ MCSB

k∗ and

MBSB
k∗+1 < MCSB

k∗+1. The optimal number of trials is given by k∗. To see this, note that

if k > k∗, the principal can increase expected payoff by reducing k since at such a k,

MBSB
k < MCSB

k . However if k < k∗, then MBSB
k > MCSB

k and hence the principal can

increase expected payoff by increasing k.

Proof of Proposition 3

In the complete information benchmark, there are no bonuses paid. Hence MCCI
k = 0 for

all k while the marginal benefit is given by

MBCI
k = θk+1δk[

k−1∏
m=0

(1− αmγ)][αkγR− c]

Since Xkk+1 > 0 we see that MBCI
k > MBSB

k . Thus in the complete information

benchmark, both “marginal benefit” is higher and the “marginal cost” is lower compared

to the second best. Hence the optimal of trials will be higher as well. Note that even if
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MBCI
k > MBSB

k it is still true that MBCI
k is decreasing in k - the argument is similar to

that presented in the proof of Lemma 2 - and hence experimentation is terminated after a

finite number of failures even in the complete information benchmark.

Proof for the Comparative Statics

Comparative statics with respect to α0

Lemma A.5.1: MBSB
k is increasing in α0 for all k for which MBSB

k > 0.

Proof: We see that

MBSB
k ≡ θk+1δk[

k−1∏
m=0

(1− αmγ)][αkγ(R−Xkk+1)− c]

We examine separately the terms which are a function of α0:

[
k−1∏
m=0

(1− αmγ)][αkγ(R−Xkk+1)− c]

This can be simplified as

[
k−1∏
m=0

(1− αmγ)]αkγ(R−Xk,k+1)− [
k−1∏
m=0

(1− αmγ)]c

We note that

k−1∏
m=0

(1− αmγ)αkγ = α0(1− γ)kγ

and hence is increasing in α0.

From equation (1), we see that αk is also increasing in α0.
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Finally

−Xkk+1 = −b(1− δ)
δγαkp

is increasing in α0 since αk is increasing in α0. Thus [
∏k−1

m=0(1− αmγ)][αkγ(R −Xkk+1)]

is increasing in α0.

Next we observe that

k−1∏
m=0

(1− αmγ) = 1− α0 + α0(1− γ)k

Taking derivative of this expression with respect to α0, we get −1 + (1− γ)k < 0 - hence∏k−1
m=0(1−αmγ) is decreasing in α0which implies that −

∏k−1
m=0(1−αmγ)c is increasing in α0.

Thus both of the components in the expression for MBSB
k is increasing in α0 which gives us

the result.

Lemma A.5.2: Fix k ≥ 1. An increase in α0 can lead to a increase in MCSB
k .

Proof: We start by noting

MCSB
k =

k∑
s=1

θsδs−1α0(1− γ)s−1γ(b+
b(1− δ)
δαkγp

)

= α0(1 +
(1− δ)
δαkγp

)[
k∑
s=1

θsδs−1b(1− γ)s−1γ]

The portion that is dependent on α0 is given by α0(1 + (1−δ)
δαkγp

). The derivative of this

expression with respect to α0 is given by

1 + {1− δ
δ

.
1

γp
}{1− 1

(1− γ)k−1
}
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which can be positive - hence an increase in α0 can lead to a increase in MCSB
k .

Alternatively observe that for δ = 1, MCSB
k simplifies to

∑k
s=1 α0(1 − γ)s−1γb which is

an increasing function of α0.

Lemma A.5.3 : An increase in α0 leads to an increase in the expected payoff for the

principal.

The principal’s expected profit for k trials is given by

Πk = θ[α0γ(R−X0k)− c] +
k−1∑
s=1

θs+1δs{
s−1∏
m=0

(1− αmγ)}{αsγ(R−Xsk)− c}

Fix k. Then an increase in α0 leads to an increase in the Πk. The proof is similar to

showing that the “marginal benefit” is an increasing function of α0(Lemma A.5.2). The only

difference is we have Xsk where s = 0, 1...k−1 in place of Xkk+1. However if we hold fixed k,

then Xsk is a decreasing function of α0 just as Xkk+1 is decreasing function of α0 and hence

analogous arguments hold.

Lemma A.5.4 : An increase in α0 leads to an increase in the number of trials in the second

best.

Define k∗(α0)+1 as the optimal number of trials in the second best when initial prior

about the agent being of high ability is given by α0.

We have Πk∗(α0)+1 − Πk∗(α0) ≡ 4Πk∗(α0) ≥ 0 , since k∗(α0) + 1 is the optimal number of

trials when prior is given by α0. Using the expressions for MBSB
k∗(α0)

and MCSB
k∗(α0)

, we can

rewrite this condition as
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θk
∗(α0)+1δk

∗(α0)(1− α0γ)..(1− αk∗(α0)−1γ)[αk∗(α0)γ(R−Xk∗(α0)k∗(α0)+1)− c]

+

k∗(α0)∑
s=1

θsδs−1α0(1− γ)s−1γ(Xs−1 k∗(α0) −Xs−1 k∗(α0)+1) ≥ 0

Since Xkk+1 = b(1−δ)
δαkγp

and Xs−1 k − Xs−1 k+1 = −b − b(1−δ)
δαkγp

, the above expression can be

rewritten as

θk
∗(α0)+1δk

∗(α0)α0(1− γ)k
∗(α0)γR− (1− α0 + α0(1− γ)k)(

b(1− δ)
δp

+ c)

−
k∗(α0)∑
s=1

θsδs−1α0(1− γ)s−1γ(b+
b(1− δ)
δαk∗(α0)γp

) ≥ 0

from which we obtain

θk
∗(α0)+1δk

∗(α0)(1− γ)k
∗(α0)R−

k∗(α0)∑
s=1

θsδs−1(1− γ)s−1b > 0.

We can rewrite 4Πk∗(α0) as

4Πk∗(α0) = θk
∗(α0)+1δk

∗(α0)α0(1− γ)k
∗(α0)γR

−(1− α0 + α0(1− γ)k
∗(α0))(

b(1− δ)
δp

+ c)

−
k∗(α0)∑
s=1

θsδs−1α0(1− γ)s−1γb

−
k∗(α0)∑
s=1

θsδs−1(1− γ)s−1
(1− α0 + α0(1− γ)k

∗(α0))

(1− γ)k∗(α0)

b(1− δ)
δp
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Using the envelope theorem, we obtain

∂4Πk∗(α0)

∂α0

= θk
∗(α0)+1δk

∗(α0)(1− γ)k
∗(α0)γR

−(−1 + (1− γ)k
∗(α0))(

b(1− δ)
δp

+ c)

−
k∗(α0)∑
s=1

θsδs−1(1− γ)s−1γb

−
k∗(α0)∑
s=1

θsδs−1(1− γ)s−1
(−1 + (1− γ)k

∗(α0))

(1− γ)k∗(α0)

b(1− δ)
δp

Since −1 + (1− γ)k
∗(α0) < 0 and

θk
∗(α0)+1δk

∗(α0)(1− γ)k
∗(α0)R−

k∗(α0)∑
s=1

θsδs−1(1− γ)s−1b > 0.

we obtain that

∂4Πk∗(α0)

∂α0

> 0

Hence an increase in α0 increases 4Πk∗(α0). Since 4Πk∗(α0) ≥ 0, this implies that an

increase in prior leads to an increase in the number of trials (from proposition 2).

Comparative statics with respect to c

Lemma A.5.5: MBSB
k is decreasing in c and MCSB

k is independent of c. Hence an increase

in c leads to a decrease in the number of trials.
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The first part of the lemma follows from observing that

MCSB
k =

k∑
s=1

θsδs−1α0(1− γ)s−1γ(b+
b(1− δ)
δαkγp

)

is independent of c while

MBSB
k = θk+1δk[

k−1∏
m=0

(1− αmγ)](αkγ(R−Xkk+1)− c)

is clearly a decreasing function of c for a given value of k.

The second part of the lemma is a consequence of proposition 2.

Lemma A.5.6: An increase in c leads to a decrease in the expected payoff of the principal.

Let cH > cL and let k∗(c) denote the optimal number of trials when cost of implement-

ing a project is given by c. Let Πk(c) denote the principal’s expected payoff from a k-trial

contract when the cost of implementing project is c. We observe that

Πk(c) = θ[α0γ(R−X0k)− c] +
k−1∑
s=1

θs+1δs{
s−1∏
m=0

(1− αmγ}{αsγ(R−Xsk)− c}

Holding fixed k, we observe thatΠk(c) is a decreasing function of c.

From Lemma A.5.6, k∗(cL) ≥ k∗(cH).

Next observe that Πk∗(cL)(c
L) ≥ Πk∗(cH)(c

L), since k∗(cL) denote the optimal number of trials

when cost of implementing a project is given by cL.

Thus we get Πk∗(cL)(c
L) ≥ Πk∗(cH)(c

L) ≥ Πk∗(cH)(c
H) which concludes the proof.
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