Society for Economics Research in India Working Paper Series

SIMULTANEOUS BORROWING AND SAVING IN MICROFINANCE

Dyotona Dasgupta (Jindal Global Business School, O.P. Jindal Global University) Prabal Roy Chowdhury (Indian Statistical Institute, Delhi)

Working Paper No. 17 http://seri-india.org/research

September 2021

Simultaneous Borrowing and Saving in Microfinance

Dyotona Dasgupta* Prabal Roy Chowdhury[†]

Abstract

This paper provides a rationale for one of the widely practised mechanisms by MFIs – simultaneous borrowing and saving. Unlike the existing literature, our explanation does not involve any behavioral aspect. We study a dynamic relationship between a benevolent MFI and a strategic borrower. The optimum contract involves simultaneous borrowing and saving – at each date, the MFI provides a small loan, the borrower invests that in a productive technology, and saves the net return with the MFI. These help her to accumulate a lumpsum amount and "graduate" to an improved lifetime utility which is not achievable when only credit is provided. Over time, as her savings increase, her incentive to repay increases. The optimal loan scheme is weakly progressive i.e. weakly increasing over time. We also relate our analysis to the well-known non-existence result of Bulow and Rogoff (1989) and Rosenthal (1991).

JEL Classification Number: O12, O16, D86, G21.

^{*}Corresponding author. Jindal Global Business School, O.P. Jindal Global University. Email: das-gupta.dyotona@gmail.com.

[†]Indian Statistical Institute, Delhi. Email: prabalrc1@gmail.com.

1 Introduction

Simultaneous borrowing and saving have been practised by many microfinance institutions (hereafter MFIs), e.g. Grameen II, and FINCA Nicaragua. However, it may seem counter-intuitive since, with money being fungible, it would make more sense to just save the net amount instead. In contrast to the existing literature, we provide a rationale for this practice that does not involve any behavioral aspect. In particular, we develop a theoretical model where the MFI provides a (locked-in) savings service along with credit, which increases a poor borrower's lifetime utility beyond the level achievable when only credit is provided. Interestingly, the borrower's welfare-maximizing loan sequence is progressive in nature – increasing over time contingent on successful repayment – a practice that is common to almost all the MFIs (Grameen II, FINCA Nicaragua for example). Thus, in addition to providing a rationale for simultaneous borrowing and saving, this paper contributes to the literature by studying the impact of (locked-in) savings on loan size, as well as developing an explanation of progressive lending, two other institutional aspects that have attracted relatively less attention in the literature.

Formally, we study a dynamic relationship between a borrower with no endowment and a benevolent MFI whose objective is to maximise the borrower's lifetime utility subject to a break-even condition. The borrower has access to a project that requires a fixed initial investment (\bar{S} say). We may think of this \bar{S} as the amount required for renting a formal storefront with a minimum scale, acquiring an asset, hiring an employee, etc. (see Banerjee et al. (2019)). When a poor borrower starts investing in this non-convex technology we say that she has graduated. The problem is that she is subject to an ex post moral hazard problem in that she does not repay whenever she has an incentive to do so and it is not possible for the MFI to incentivise her to repay once she graduates. Therefore, the first-best where the MFI lends the required amount so that the borrower can graduate immediately and repays after that, is not achievable. Hence, the MFI has to design a contract such that the borrower does not have any incentive to default and her utility is maximised. However, we show that the MFI can solve this incentive problem by providing conditional access to a productive technology which does not require any initial fixed investment and is less productive than the non-convex technology discussed earlier. In case of default, the borrower loses access to this technology.

We first characterize the optimal contract under this scenario where the borrower has limited access to technologies.³ The optimal contract involves both savings and credit – at each period, the MFI provides a small amount of loan which the borrower invests in the technology, access to which is given by the MFI. After she gets the return from that investment, she decides whether to repay or not. In case she repays, she also saves a part of the net return with the MFI and gets another small loan, with the same conditions. This process continues until her total savings become large enough (\bar{S}) to graduate. In case of default, the MFI terminates the contract and confiscates the borrower's savings with it till date. The termination of the contract entails that the borrower loses access to all future loans, as well as the access to technology which was provided by the MFI.

¹Many MFIs provide such a service. It has been argued that "collateralizing mandatory savings could offer a win-win solution for both lender and borrower by providing the MFP" (where MFP stands for Microfinance Providers) "with security while at the same time building the asset base of the client." (Aslam and Azmat (2012)). For more evidence see Appendix B.

²While there are quite a few papers which address progressive lending, most of them involve default along the equilibrium path, however, we observe near perfect repayment rate in microfinance. For more examples of MFIs which practise progressive lending and compulsory savings see Appendix B.

³We shortly discuss a scenario when the borrower has access to all the available technologies in the economy. In Section 4, we show that borrower's limited access to technology is a necessary condition for the existence of any incentive compatible contract.

Since graduation is welfare improving, after default, the borrower saves the amount with which she defaults and graduates as soon as that becomes \bar{S} .

The optimal contract of the MFI enables the borrower to graduate⁴ as soon as possible: Along the equilibrium path, the MFI terminates the contract as soon as the borrower's total savings (along with interest) become \bar{S} . The borrower's savings increase with the net return at any date. So, the MFI lends in such a way that the net return is maximised, which requires lending the efficient amount⁵ if that is incentive compatible, or the maximum amount that is. We further find that to reduce the time required to accumulate \bar{S} , the borrower saves the entire net return with the MFI.

The optimum loan scheme is weakly progressive, i.e. nondecreasing over time. Intuitively, as time passes, the amount saved with the MFI increases, so the time remaining to graduate decreases, which implies that the present discounted payoff from graduation increases over time. Moreover, we assume that in case of default, the MFI confiscates her entire savings till date and she loses access to the technology provided by the MFI. Thus to graduate, she saves the amount with which she defaults. Therefore, the incentive compatibility constraint gets relaxed if the loan amount decreases (or remains constant) over time. The MFI, being benevolent, hence would increase the loan amount whenever that is lower than the efficient amount. We further find that, depending on the productivity of the MFI's technology and the fixed initial investment required to graduate S, the efficient amount may become incentive compatible from the very beginning, or after a few periods towards the end, or never. Accordingly, the optimum loan scheme can be of three types - (i) constant - the optimum loan amount remains constant at the efficient level, (ii) progressive with a cap – it initially increases and then remains constant at the efficient level, and (iii) strictly progressive – it increases at all periods. In reality, most MFIs practise progressive lending with a cap.⁶ In our framework, the optimal loan scheme is such when the production technology available before graduation is not very productive and the fixed initial investment required to graduate is moderate.

We end the paper with an impossibility result – if the borrower has access to all the technologies available in the economy, then there does not exist any incentive compatible contract. We show that, given any contract, there exists a time period at which the borrower's lifetime utility from default is strictly higher than that from repayment, and she certainly, defaults at that time. This is an extension of the well-known non-existence result of Bulow and Rogoff (1989) and Rosenthal (1991) to our framework.

Now, we briefly discuss the related literature. Simultaneous borrowing and saving have mostly been explained behaviorally – Laibson et al. (2003), Baland et al. (2011), and Basu (2016) for example. In particular, Laibson et al. (2003) assume that agents are present biased to explain 'debt-puzzle' – they borrow aggressively on credit cards, and simultaneously save for retirement. Baland et al. (2011) explain how poor people save and borrow simultaneously to pretend to be poor so that they do not have to lend to their poor relatives. The paper closest to ours is Basu (2016). It develops a three-period model where a sophisticated present biased agent has an opportunity to invest at period 1. Without any commitment, due to present bias, he does not invest when the time comes. To make him invest, his period zero self simultaneously borrows and saves in a risky

⁴Banerjee et al. (2019) find that the MFIs help the households to escape from the fixed-cost-driven poverty trap and move into a more productive technology.

⁵The efficient amount is that amount for which the net return is maximised (formal definition later).

 $^{^6}$ Bandhan, Grameen, BRAC, to name a few. For more examples see Appendix B.

⁷This conforms with reality as MFIs fund small businesses and Banerjee et al. (2015) in their famous six-country study find that increase in utility from microfinance is "modestly positive". Further, while it is difficult to estimate the required fixed initial investment to start a more productive, non-convex technology, one of the first papers to estimate that is Banerjee et al. (2019). Their estimated fixed cost is Rs. 7,900.

asset such that his wealth at that period remains the same. But the expected wealth at period 2 decreases. This makes the risk-averse agent invest at period 1. Our explanation does not rely on any behavioral aspect, instead benevolent MFIs optimally choose to provide credit and savings service simultaneously in order to improve the welfare of the poor agents who are subject to ex post moral hazard.

There are a few papers that address progressive lending in microfinance. In a two-period model Armendàriz and Morduch (2000) show how a strategic borrower's incentive to repay in the first period increases with an increase in the size of the second period loan. The equilibrium involves default in the second period though. In Ghosh and Ray (2016) progressive lending helps in weeding out the borrowers who never repay. Egli (2004) shows that progressive lending may fail to identify a "bad" type, since a bad borrower may camouflage herself as a "good" borrower (who always repays) in order to get a higher amount of loan later on which she defaults with certainty. Shapiro (2015) examines a framework with uncertainty over borrowers' discount rates. He shows that even in the efficient equilibrium almost all the borrowers default. Note that all these papers involve default along the equilibrium path. In contrast, our paper provides an explanation of progressive lending with no default along the equilibrium path as we observe almost no default on MFI-loans.

2 The Basic Framework – Payoffs, Technologies and Graduation

In an infinite horizon, discrete time framework, we study a dynamic relationship between a benevolent MFI that can, simultaneously, provide credit and savings services, subject to a zero profit condition, and a poor borrower who is subject to an *ex post* moral hazard problem in that she does not repay whenever she has an incentive to do so. We also assume that the borrower is protected by limited liability constraint.

The borrower has access to a nonconvex technology $\langle V, \bar{S} \rangle$, where $\bar{S}(>0)$ is the required fixed initial investment, and V is the present discounted value of lifetime utility from investing in that technology (gross of \bar{S}). In this economy, to transfer wealth from one period to another, two other technologies which do not need any minimum initial investments are available – a deterministic neoclassical production technology $f(\cdot)$ and a savings technology. The net interest rate on savings is r. We assume the interest rate r and the common future discount factor δ are related as follows:

Assumption 1.
$$\delta = \frac{1}{1+r}$$
.

In the neoclassical production technology $f(\cdot)$, if an amount k is invested at period t, then it produces f(k) in the next period. Further, $f(\cdot)$ satisfies the usual assumptions:

Assumption 2.
$$f(0) = 0$$
, $f'(\cdot) > 0$, $f''(\cdot) < 0$, $\lim_{k \to 0} f'(k) = \infty$ and $\lim_{k \to \infty} f'(k) = 0$.

We denote the efficient scale of investment by k^e which solves $\underset{k}{\operatorname{argmax}} [f(k) - (1+r)k]$.

We assume that the borrower has a linear utility function. We also assume that the net gain from investing in the $\langle V, \bar{S} \rangle$ technology exceeds the present discounted net payoff from running the $f(\cdot)$ technology at its efficient level:

Assumption 3.
$$V - \bar{S} > \sum_{t=1}^{\infty} \delta^t [f(k^e) - (1+r)k^e] = \frac{\delta}{1-\delta} [f(k^e) - (1+r)k^e],$$

⁸We make this assumption to abstract from time trends created only from time preference.

where recall $\bar{S}(>0)$ is the required fixed initial investment, and V is the present discounted value of lifetime utility from investing in that technology (gross of \bar{S}). For this reason, once the borrower starts investing in $\langle V, \bar{S} \rangle$ technology, we say that she has graduated.

Observe the first-best is to graduate immediately but that is not achievable as the borrower's endowment is zero, so she cannot start the project on her own. The MFI could provide adequate credit \bar{S} so that the borrower could graduate immediately. However, that is also not possible as the borrower would default and the MFI would make a loss with certainty. In fact, the existence of any incentive compatible contract depends on the extent of borrower's access to various technologies before graduation. As we shall later find that such contracts exist only when she has limited access to technology. 10

3 Simultaneous Borrowing and Saving

In this section, we characterize the optimal contract(s) when the borrower does not have access to the $f(\cdot)$ technology and has access to a savings technology and $\langle V, \bar{S} \rangle$ technology, on her own. We find that the optimum contract involves simultaneous borrowing and saving – at each period, the borrower receives a loan, invests in the $f(\cdot)$ technology, and after repayment, saves the rest with the MFI. We also find that the optimum loan amount is progressive in that it (weakly) increases over time. Further, the optimum contracts end at a finite date and the borrower graduates immediately after the successful completion of the contract.

3.1 Contracts and Timeline

We consider an infinite horizon, discrete time framework where $t \geq 0$. At t = 0, the MFI announces a contract $\langle \{k_t(w_t, s_t)\}_{t=0}^{T_M-1}, T_M \rangle$ where T_M is the 'successful' termination date of the contract and k_t is the loan amount at any period $t \in \{0, ..., T_{M-1}\}$. The loan amount at each period t is a function of the borrower's savings with the MFI till date w_t and her own independent savings s_t . The MFI may also choose to lend forever in which case $T_M = \infty$, or alternatively, the MFI, in that case announces $\langle \{k_t(w_t, s_t)\}_{t=0}^{\infty} \rangle$. As the MFI is benevolent, it chooses the termination date and the loan amount at each date till then, optimally. We start our analyses with a finite termination date.

At any period $t \in \{1, ..., T_M\}$, the borrower decides whether to repay the last period's loan (along with interest) $(1+r)k_{t-1}$ or not.¹¹ If she repays, then she also decides how much to save with the MFI and how much on her own. The savings with the MFI is assumed to be locked, ¹² that is, the borrower can choose the savings rate with the MFI, but once saved, she cannot withdraw her savings with the MFI till the successful termination of the contract. If the borrower defaults at any period $t \in \{1, ..., T_M\}$, then she loses access to all future loans, access to the $f(\cdot)$ technology, and all of her savings with the MFI till date. We call this 'unsuccessful' termination of the contract. After the termination of the contract, either successfully or unsuccessfully, the borrower operates

⁹This is a direct consequence of Bulow and Rogoff (1989) and Rosenthal (1991).

¹⁰Section 4 addresses this non-existence problem. In the next section, we characterize one particular case where the borrower has limited access to technologies, in particular where the borrower does not have access to the $f(\cdot)$ technology and has access to a savings technology and $\langle V, \bar{S} \rangle$ technology, on her own. The analyses of other two cases – (a) she does not have access to the savings technology only and (b) she does not have access to both $f(\cdot)$ and savings technologies – can be done analogously. However, those are beyond the scope of this paper.

¹¹Here, we assume that at any period $t \in \{1, ..., T_M\}$, the borrower is supposed to repay the entire amount she had borrowed at period t-1 (along with interest). In Remark 1, we discuss that it is without loss of generality.

¹²Here, we only consider the *locked-in* savings option. However, even if the borrower could have chosen between *locked-in* and *no locked-in* savings options, she would have, optimally, chosen the former. We discuss this in more detail in Remark 2

on her own. She solves the optimum problem, in case she does not graduate – optimally chooses how much to save at each period. She also solves the problem, in case she graduates – optimally, chooses the graduation date and the savings rate of each period. She chooses to graduate, only if that provides her strictly higher utility.

The timeline is as follows. At t=0, the MFI announces a contract $\langle \{k_t(w_t, s_t)\}_{t=0}^{T_M-1}, T_M \rangle$. The borrower either accepts or rejects this contract, with the game ending in case she rejects (as the borrower's endowment is zero). If the borrower accepts then she gets $k_0(0,0)$ amount of loan and she invests that in the $f(\cdot)$ technology. The continuation game at any period $t \in \{1, ..., T_M - 1\}$ is as follows:

Stage 1: $f(k_{t-1})$ is produced. The borrower decides whether to repay $(1+r)k_{t-1}$ or not. If she does not repay, then the contract gets terminated, unsuccessfully. The borrower loses access to all future loans, access to $f(\cdot)$ technology and also, all of her savings with the MFI till date.

Stage 2: If she repays, then after the repayment, money in her hand comprises of net return $f(k_{t-1}) - (1+r)k_{t-1}$ and her own independent savings $(1+r)s_{t-1}$ (if any). She saves a fraction α_t with the MFI, a fraction β_t on her own, and consumes the rest. We shall consider $0 \le \alpha_t, \beta_t$ and given limited liability, $\alpha_t + \beta_t \le 1$.

Stage 3: The MFI observes the borrower's total savings with it till date, i.e $w_t = \alpha_t[f(k_{t-1}) - (1+r)k_{t-1} + (1+r)s_{t-1}] + (1+r)w_{t-1}$, and also her own independent savings i.e. $s_t = \beta_t[f(k_{t-1}) - (1+r)k_{t-1} + (1+r)s_{t-1}]$, and lends $k_t(w_t, s_t)$. The borrower invests this amount $k_t(w_t, s_t)$ in the $f(\cdot)$ technology and the game moves to the next period.

At period T_M , $f(k_{T_M-1})$ is produced. The borrower decides whether to repay $(1+r)k_{T_M-1}$ or not. If she repays, the contract gets terminated successfully and she gets back all of her savings with the MFI till date, i.e. $(1+r)w_{T_M-1}$ whereas, if she does not repay, then the contract gets terminated, unsuccessfully, and the MFI confiscates her entire savings with it.

After the termination of the contract (either successfully or unsuccessfully), the borrower decides whether to graduate or not. Accordingly she chooses the savings rate at each date, and a graduation date, in case she decides to graduate.

We solve for the subgame perfect Nash equilibrium (SPNE) with endogenous end date.

3.2 Characterization of The Optimal Contracts: Simultaneous Borrowing and Saving

We, first, consider the problem of the borrower after the successful termination of the contract at T_M . Money in her hand at that time includes net return after repayment, total deposit with the MFI till date (along with interest) and her own independent savings till date. Let us denote money in hand by ω . Recall, she has access to the savings and $\langle V, \bar{S} \rangle$ technology but not to $f(\cdot)$ technology on her own. Given her access to technologies and wealth at T_M , she compares her lifetime utilities from graduating and not graduating. In order to do that, she optimally solves her problem when she does not graduate – savings rate at each period and when she graduates – optimally chooses a graduation date T and a savings rate till that date $\beta_t^A \in [0,1] \ \forall t \in \{T_M,...,T-1\}$, subject to GC, the graduation constraint, which ensures that at the time of graduation she has at least \bar{S} amount

of savings. Then, she compares her lifetime utilities in both the cases, and chooses to graduate only if that gives her strictly higher pay-off. Formally, her problem is to

$$\mathcal{U}^{A}(\omega|\text{No Graduation}) \equiv \underset{\langle \{\beta_{t}^{A}\}_{t=T_{M}}^{\infty} \rangle}{\text{Maximise}} (1 - \beta_{T_{M}}^{A})\omega + \sum_{t=T_{M}+1}^{\infty} \delta^{t-T_{M}} (1 - \beta_{t}^{A})[(1+r)s_{t-1}^{A}]$$
 where $s_{T_{M}}^{A} \equiv \beta_{T_{M}}^{A}\omega$, and and $\forall t \geq T_{M}+1$ $s_{t}^{A} \equiv \beta_{t}^{A}[(1+r)s_{t-1}^{A}]$, Subject to (i) $\beta_{t}^{A} \in [0,1]$ $\forall t \geq T_{M}$,

$$\begin{split} \mathcal{U}^A(\omega|\text{Graduation}) &\equiv \underset{\langle \{\beta_t^A\}_{t=T_M}^{T-1}, T \rangle}{\text{Maximise}} (1-\beta_{T_M}^A)\omega + \sum_{t=T_M+1}^{T-1} \delta^{t-T_M} (1-\beta_t^A)[(1+r)s_{t-1}^A] \\ &+ \delta^{T-T_M} \left[s_T^A - \bar{S} + V \right] \end{split}$$

where $s_{T_M}^A \equiv \beta_{T_M}^A \omega$, and $\forall t \in \{T_M + 1, ..., T - 1\}$ $s_t^A \equiv \beta_t^A [(1 + r)s_{t-1}^A]$, and $s_T^A \equiv (1 + r)s_{T-1}^A$, Subject to (i) $\beta_t^A \in [0, 1]$ $\forall t \in \{T_M, ..., T - 1\}$, and (ii) Graduation Constraint (GC): $s_T^A \geq \bar{S}$,

$$\mathcal{U}^A(\omega) = \max \Big\{ \mathcal{U}^A(\omega|\text{No Graduation}), \mathcal{U}^A(\omega|\text{Graduation}) \Big\}.$$

We discuss the objective functions and the constraints briefly. When the borrower does not graduate, at each period, she chooses savings rate and consumes the rest immediately. Of course given the limited liability constraint, at any period t, she can maximum save entire money in her hand at that period, hence, $\beta_t \leq 1$. We assume that she cannot borrow from the future, so $\beta_t \geq 0$. Now, consider her problem when she graduates. The objective function has two components – borrower's utility from consumption from period T_M till T-1. And, the borrower's utility from period T onwards. At period T, the borrower invests \bar{S} to graduate, the present discounted value of lifetime utility from which is V, and consumes the rest. As mentioned above, the graduation constraint GC ensures that at period T, she has enough savings to invest \bar{S} . The solution to this problem is denoted by $\mathcal{U}^A(\omega)$.

Now, observe as the borrower has linear utility function and the future discount factor is the inverse of the interest rate on savings, irrespective of her choice of savings rate and graduation date T (in case of graduation), we have

$$\mathcal{U}^{A}(\omega|\text{No Graduation}) = \omega,$$
And,
$$\mathcal{U}^{A}(\omega|\text{Graduation}) = \delta^{T-T_{M}}\left((1+r)^{T-T_{M}}\omega - \bar{S} + V\right) = \omega + \delta^{T-T_{M}}(V - \bar{S})$$

$$\Rightarrow \quad \mathcal{U}^{A}(\omega) = \max\left\{\mathcal{U}^{A}(\omega|\text{No Graduation}), \mathcal{U}^{A}(\omega|\text{Graduation})\right\} = \mathcal{U}^{A}(\omega|\text{Graduation}) \text{ as } V - \bar{S} > 0.$$

Similarly, consider the problem of the borrower after she defaults at period τ . Money in her hand at that time is $f(k_{\tau-1})$ and her own independent savings till date $(1+r)s_{\tau-1}$. It can, again, be shown that the borrower would choose to graduate in which case, her problem is to choose a graduation date $T^A(\tau)$ and the savings rate $\beta_t^A(\tau) \in [0,1] \ \forall t \in \{\tau,...,T^A(\tau)-1\}$. Since the problem is very similar to the problem depicted above, we skip it here.

Observation 1. Suppose, the contract with the MFI gets terminated at a finite date (either successfully at T_M or unsuccessfully after a default at period $\tau \leq T_M$). Then the borrower chooses to graduate.

The above observation is true even when the graduation date and the savings rate are not chosen optimally. Next, we characterize the optimal choices when the borrower graduates after a finite termination of the contract (either successfully at T_M or unsuccessfully after a default at period $\tau \leq T_M$). We find that the optimal choices depend only on the money in the borrower's hand at the time of termination and do not depend on how the contract was terminated, successfully or unsuccessfully. So, we denote the optimal solution by $\mathcal{U}^A(\omega)$ in both the cases, where ω is the money in hand at the time of termination. The following lemma characterizes the optimal choices – graduation date and savings rate till that period, after the termination of a contract successfully (or unsuccessfully). We find that the borrower optimally chooses to graduate as soon as possible. We collect all the proofs in an Appendix A.

Lemma 1. After the successful (or unsuccessful) termination of the contract at T_M (or at τ), at the optimum, the borrower graduates as soon as possible –

- i. if money in her hand, at the termination date T_M (or τ), is no less than \bar{S} , then she graduates immediately,
- ii. otherwise, (a) she graduates as soon as her savings becomes \bar{S} , i.e. $s_{T^*-1}^A < \bar{S} \le s_{T^*}^A$ (or $s_{T^{A^*}(\tau)-1}^A < \bar{S} \le s_{T^{A^*}(\tau)}^A$), and (b) at each period till then, she saves as much as she can, i.e. $\beta_t^{A^*} = 1 \ \forall t \in \{T_M, ..., T^*-1\}$ (or $\beta_t^{A^*}(\tau) = 1 \ \forall t \in \{\tau, ..., T^{A^*}-1\}$).

Intuitively, given our assumptions that the borrower has a linear utility function, and discounts future as the inverse of the interest rate on savings (Assumption 1), she is indifferent between consuming an amount now and saving and consuming that amount (along with interest) later. However, as graduation is welfare improving (Assumption 3), and beyond \bar{S} , V is independent of the wealth with which she graduates, the present discounted value of her lifetime utility is the maximum when the time required to graduate is the minimum. Hence, if the money in her hand at the time of termination of the contract is no less than \bar{S} , she graduates immediately, otherwise, she saves the maximum amount possible at each period and graduates as soon as her total savings become no less than \bar{S} .

Now, we consider the relationship between the MFI and the borrower. The problem of the MFI is to choose $\langle \{k_t(w_t, s_t)\}_{t=0}^{T_M-1}, T_M \rangle^{13}$ to maximize the borrower's present discounted value of lifetime utility subject to the DIC constraints which ensure that she repays always, formally, the

 $[\]overline{{}^{13}}$ For the brevity of notation, we shall denote $k_t(w_t, s_t)$ by k_t , except when explicit reference to w_t and s_t is required.

problem is to

$$\begin{aligned} & \underset{\langle \{k_t\}_{t=0}^{T_M-1}, T_M \rangle}{\text{Maximise}} \sum_{t=1}^{T_M-1} \delta^t (1 - \alpha_t - \beta_t) \big[f(k_{t-1}) - (1+r)k_{t-1} + (1+r)s_{t-1} \big] \\ & \qquad \qquad + \delta^{T_M} \mathcal{U}^A \Big(f(k_{T_M-1}) - (1+r)k_{T_M-1} + (1+r)w_{T_M-1} + (1+r)s_{T_M-1} \Big) \end{aligned}$$
 where $\forall t \in \{1, ..., T_M - 1\}$

deposit with MFI: $w_t = \alpha_t [f(k_{t-1}) - (1+r)k_{t-1} + (1+r)s_{t-1}] + (1+r)w_{t-1}$

her own savings: $s_t = \beta_t [f(k_{t-1}) - (1+r)k_{t-1} + (1+r)s_{t-1}]$

Subject to the Dynamic Incentive Compatibility (DIC) constraints:

$$(i) \forall \tau \in \{1, ..., T_{M} - 1\} \sum_{t=\tau}^{T_{M}-1} \delta^{t-\tau} (1 - \alpha_{t} - \beta_{t}) \left[f(k_{t-1}) - (1+r)k_{t-1} + (1+r)s_{t-1} \right] + \delta^{T_{M}-\tau} \mathcal{U}^{A} \left(f(k_{T_{M}-1}) - (1+r)k_{T_{M}-1} + (1+r)w_{T_{M}-1} + (1+r)s_{T_{M}-1} \right) \\ \geq \mathcal{U}^{A} \left(f(k_{\tau-1}) + (1+r)s_{\tau-1} \right) \\ (ii) \mathcal{U}^{A} \left(f(k_{T_{M}-1}) - (1+r)k_{T_{M}-1} + (1+r)[w_{T_{M}-1} + s_{T_{M}-1}] \right) \geq \mathcal{U}^{A} \left(f(k_{T_{M}-1}) + (1+r)s_{T_{M}-1} \right).$$

Let us, first, discuss the objective function. At any period $t \in \{1, ..., T_M - 1\}$, the money in the borrower's hand is the net return from production after repayment and her own independent savings till date. She saves α_t part of that with the MFI, β_t part, independently, on her own, and consumes the rest. The first term of the objective function denotes the present discounted value of her utility from consumption at each period till $T_M - 1^{\text{th}}$ period. The second term denotes the present discounted value of her utility at the T_M^{th} period when after repayment, she gets back her entire savings (along with interest) and operates on her own from that period onwards. The money in her hand at that time comprises of the net return after repayment $f(k_{T_M-1}) - (1+r)k_{T_M-1}$, her total savings with the MFI till date (along with interest) i.e. $(1+r)w_{T_M-1}$ and her own savings $(1+r)s_{T_M-1}$.

Let us, now, briefly explain the constraints. Consider any τ ($\in \{1, ..., T_M - 1\}$), the borrower's present discounted value of lifetime utility from repayment, i.e. the left hand side of the DIC can be explained as above – borrower gets utility from consumption till the $T_M - 1^{\text{th}}$ period starting from period τ and her utility at period T_M as stated above (both evaluated at period τ). The right hand side of the DIC is the borrower's utility from default at period τ , i.e. if she starts operating on her own with $f(k_{\tau})$ and her own independent savings $(1+r)s_{\tau-1}$. Similarly, consider the DIC constraint at period T_M . The L.H.S. of this constraint represents the borrower's utility from repayment at period T_M and the R.H.S. represents her utility from default. Before proceeding further let us introduce the following technical definition.

Definition 1. Given a scheme $\langle \{k_t\}_{t=0}^{T_M-1}, \{\alpha_t\}_{t=1}^{T_M-1}, \{\beta_t\}_{t=1}^{T_M-1}, T_M, \{\beta_t^A\}_{t=T_M}^{T-1}, T \rangle$, let $k_{I\tau} \Big(\langle \{k_t\}_{t=0}^{T_M-1}, \{\alpha_t\}_{t=1}^{T_M-1}, \{\beta_t\}_{t=1}^{T_M-1}, T_M, \{\beta_t^A\}_{t=T_M}^{T-1}, T \rangle \Big)$ denote the maximum loan amount at τ , such that DIC at τ holds.

Observe, the MFI would never lend more than the efficient amount 14 k^e as otherwise it is possible to increase the borrower's utility, by decreasing the loan amount which would increase

¹⁴Recall the definition of k^e , it maximizes the net return from production: argmax [f(k) - (1+r)k].

the net return from production, without violating the DIC constraints. Hence, at the optimum, the MFI lends k^e whenever that is incentive compatible, otherwise, it lends the maximum amount which is. We summarize this in the following observation.

Observation 2. Let Assumption 2 hold and $\langle \{k_t^*\}_{t=0}^{T_M-1}, \{\alpha_t\}_{t=1}^{T_M-1}, \{\beta_t\}_{t=1}^{T_M-1}, T_M, \{\beta_t^A\}_{t=T_M}^{T-1}, T \rangle$ be any scheme where k_t^* is the optimum loan amount at any period $t \in \{0, ..., T_M - 1\}$, then $k_t^* = min\{k^e, k_{It}\}$.

Given this observation, consider the problem of the borrower, from period 1 till T_M , when she chooses to repay at all the periods (which is ensured by the DICs). The savings with the MFI is locked in, so after repayment at any period $t \in \{1, ..., T_{M-1}\}$, money in her hand is the net return from production $f(k_{t-1}) - (1+r)k_{t-1}$ plus her own independent savings $(1+r)s_{t-1}$. She chooses a part (α_t) of it to save with the MFI and a part (β_t) to save on her own, and consumes the rest such that the present discounted value of her lifetime utility is the maximum. Hence, her problem is to

$$\underset{\langle\{\alpha_{t}\}_{t=1}^{T_{M}-1},\{\beta_{t}\}_{t=1}^{T_{M}-1}\rangle}{\text{Maximise}} \sum_{t=1}^{T_{M}-1} \delta^{t} (1 - \alpha_{t} - \beta_{t}) \left[f(k_{t-1}) - (1+r)k_{t-1} + (1+r)s_{t-1} \right] \\
+ \mathcal{U}^{A} \left(f(k_{T_{M}-1}) - (1+r)k_{T_{M}-1} + (1+r)w_{T_{M}-1} + (1+r)s_{T_{M}-1} \right) \\
\text{Subject to} \quad \forall t \in \{1, ..., T_{M} - 1\} \quad \alpha_{t}, \beta_{t} \geq 0 \text{ and } \alpha_{t} + \beta_{t} \leq 1.$$

In the next lemma, we characterize the borrower's optimal choices of the savings rates – the part of money in her hand she saves with the MFI, i.e. α_t and the part she saves on her own, i.e. β_t

Lemma 2. Let Assumptions 1, 2, 3 hold, and $\langle \{k_t^*\}_{t=0}^{T_M-1}, \{\alpha_t^*\}_{t=1}^{T_M-1}, \{\beta_t^*\}_{t=1}^{T_M-1}, T_M, \{\beta_t^{A^*}\}_{t=T_M}^{T^*-1}, T^* \rangle$ be any scheme where $\beta_t^{A^*}$, T^* , k_t^* , α_t^* and β_t^* are optimally chosen. Then, at any period $t \in \{1, ..., T_M - 1\}$, the borrower saves entire money in her hand with the MFI, i.e. $\alpha_t^* = 1$ and independently saves nothing, i.e. $\beta_t^* = 0$.

The intuition is very similar to that when she operates on her own. Given our assumptions that the borrower has a linear utility function, discounts future as the inverse of the interest rate on savings (Assumption 1), graduation is welfare improving (Assumption 3), and beyond \bar{S} , V is independent of the wealth with which she graduates, maximizing borrower's utility boils down to minimizing the time required to graduate. Given Lemma 1, (given a sequence of loan scheme) it implies that her objective is to maximize the amount with which her relationship with the MFI gets, successfully, terminated, i.e. her objective is to maximize the money in her hand at T_M . So, she maximizes her savings at each period, i.e. at any $t \in \{1, ..., T_M - 1\}$, she, optimally, chooses α_t and β_t , such that $\alpha_t^* + \beta_t^* = 1$.

Now, consider the choices of α_t^* and β_t^* , separately. For that consider their effects on the money in the hand of the borrower at T_M . Observe, given a loan sequence $\{k_t\}_{t=0}^{T_M-1}$, the choices of $\{\alpha_t\}_{t=1}^{T_M-1}$ and $\{\beta_t\}_{t=1}^{T_M-1}$ do not affect it. However, the DICs get affected by those choices – at any period $t \in \{1, ..., T_M - 1\}$, a higher amount of loan becomes incentive compatible with an increase in α_t and a decrease in β_t . Hence, given Observation 2, the net return from production, and hence, savings at each period, (weakly) increases with an increase in α_t and a decrease in β_t . Thus, at each period $t \in \{1, ..., T_M - 1\}$, the borrower chooses to save the entire money in her hand with the MFI, i.e. $\alpha_t^* = 1$, which implies she saves nothing independently, i.e. $\beta_t^* = 0$.

We, now, characterize the successful termination date of an optimum contract. For that, we

consider the MFI's problem, given the optimal choices we have characterized, till now. It is to

$$\underset{\left\langle \left\{k_{t}\right\}_{t=0}^{T_{M}-1}, T_{M}\right\rangle}{\text{Maximise}} \delta^{T^{*}} \mathcal{U}^{A} \left(\sum_{t=1}^{T_{M}} (1+r)^{T_{M}-t} [f(k_{t-1}) - (1+r)k_{t-1}] \right)$$

Subject to DIC constraints: $\forall \tau \in \{1, ..., T_M\}$

$$\delta^{T^*-\tau} \mathcal{U}^A \Big(\sum_{t=1}^{T_M} (1+r)^{T_M-t} [f(k_{t-1}) - (1+r)k_{t-1}] \Big) \ge \mathcal{U}^A (f(k_{\tau-1})).$$

In the next lemma, we show that that the MFI chooses to terminate the contract successfully, as soon as money in the borrower's hand (at the time of successful termination of the contract) becomes no less than \bar{S} . The proof can be found in the Appendix A.

Lemma 3. Let Assumptions 1, 2, and 3 hold, and the MFI chooses a finite successful termination date. Suppose $\langle \{k_t^*\}_{t=0}^{T_M^*-1}, \{\alpha_t^*\}_{t=1}^{T_M^*-1}, \{\beta_t^*\}_{t=1}^{T_M^*-1}, T_M^*, \{\{\beta_t^{A^*}\}_{t=T_M^*}^{T^*-1}, T^* \rangle$ be any optimum scheme, then the MFI chooses T_M^* in such a way that

$$S_{T_M^*}^* \equiv \sum_{t=1}^{T_M^*} (1+r)^{T_M^*-t} [f(k_{t-1}^*) - (1+r)k_{t-1}^*] \geq \bar{S} > \sum_{t=1}^{T_M^*-1} (1+r)^{T_M^*-1-t} [f(k_{t-1}^*) - (1+r)k_{t-1}^*] \equiv S_{T_M^*-1}^*.$$

Intuitively, as graduation is welfare improving (Assumption 3), the objective of the benevolent MFI is to minimize the time required to graduate, subject to DIC constraints. For that, first, we argue that the MFI must lend till the time borrower accumulates enough wealth to graduate, and it should also not delay the date of graduation after that accumulated wealth becomes no less than \bar{S} . Then, we argue that choosing the successful termination date in such a manner satisfies the DIC constraints at all the dates.

To argue that the MFI must lend till the time she graduates, recall that the $f(\cdot)$ technology is more productive than the savings technology when the investment amount is less than the efficient amount k^e . And, we have observed that the MFI enables the borrower to invest that amount whenever that is incentive compatible, otherwise the maximum amount which is. So, the time required to graduate is the minimum, when she invests in such a way till the time of graduation. Further, due to our assumption that beyond \bar{S} , V is independent of the wealth with which she graduates, the MFI, optimally, terminates the contract as soon as her accumulated wealth becomes no less than \bar{S} . Given Lemma 1, which implies that the borrower graduates, immediately at T_M^* .

We argue that terminating a contract in such a way satisfies the DIC constraints at all periods. This is because if the borrower defaults, she loses access to the more productive $f(\cdot)$ technology. To retain access to that technology she repays. Observe, if the borrower had only lost access to $f(\cdot)$ technology (along with future loans), she would have defaulted at the termination date of the contract, and that would have unraveled the entire contract. But, the borrower also loses her entire savings with the MFI, in order to get back that, the borrower chooses to repay even at the termination date. In fact, as time passes, the borrower becomes willing to repay a higher amount of loans. We explore this more in the next subsection where we characterizes the dynamics of the optimal contract.

Finally, we argue that at the optimum, the termination contract is finite. For that, we compare the borrower's utility when she graduates with that when she does not. Observe, due to our assumptions that the borrower's utility function is linear, the future discount factor is inverse of the interest rate on savings, the borrower is indifferent between consuming an amount now and saving and consuming that amount (along with interest) later. And, we have already observed that

it is optimum for the borrower to graduate as soon as her savings become no less than \bar{S} . This gives us our next observation.

Observation 3. Let Assumptions 1, 2, and 3 hold. At the optimum, the MFI chooses a finite successful termination date.

We end this subsection by summarizing the full characterization of the optimum contract between the MFI and the borrower: The optimum contract involves simultaneous borrowing and saving – at each period, the borrower receives the efficient amount k^e as loan whenever that is incentive compatible, otherwise the maximum amount which is. She invests that in the $f(\cdot)$ technology and saves the entire net return with the MFI. The optimum contract gets terminated as soon as the borrower accumulates enough wealth to graduate, that is \bar{S} .

Proposition 1. (Simultaneous Borrowing and Saving) Let Assumptions 1, 2, and 3 hold. Consider any optimum scheme $\langle \{k_t^*\}_{t=0}^{T_M^*-1}, \{\alpha_t^*\}_{t=1}^{T_M^*-1}, \{\beta_t^*\}_{t=1}^{T_M^*-1}, T_M^*, \{\beta_t^{A^*}\}_{t=T_M^*}^{T^*-1}, T^* \rangle$. The borrower borrows from and saves with the MFI simultaneously:

- (a) The MFI lends the efficient amount whenever that is DIC, otherwise, it lends the maximum amount which is. Formally $k_t^* = \min\{k_{It}, k^e\}$ for all $t \in \{0, ..., T_M^*\}$.
- (b) The borrower saves the maximum possible amount with the MFI, formally $\alpha_t^* = 1$ and $\beta_t^* = 0$ $\forall t \in \{1, ..., T_M^* 1\}.$
- (c) The borrower graduates at a finite date, as soon as her total wealth becomes no less than \bar{S} .

Next, we turn towards the analyses of the dynamics of the optimum loan scheme.

3.3 The Time Path of The Optimal Loan Scheme

We next characterize the time path of the optimal loan scheme. We find that it is progressive in nature, i.e. (weakly) increasing over time. Depending on the productivity of $f(\cdot)$ technology, and the required initial investment to graduate, i.e. \bar{S} , the optimum loan scheme could be one of the following three types – (a) constant over time – remains constant at the efficient amount k^e , (b) progressive with a cap – increases till the optimum loan amount becomes k^e , after which it remains constant over time, and (c) strictly progressive – increases at all t. To characterize the parametric condition under which each of these is optimal, we introduce the following two definitions.

Definition 2. We say that the $f(\cdot)$ technology very productive when $f(k^e) \ge (1+r)(2+r)$, otherwise we say that $f(\cdot)$ is not very productive.

Definition 3. We say that the required initial investment \bar{S} is

(a) large when
$$\frac{f(k^e)[f(k^e) - (1+r)k^e]}{(1+r)[f(k^e) - (1+r)k^e] - rf(k^e)} \le \bar{S}$$
,

(b) moderate when
$$(1+r)f(k^e) \le \bar{S} < \frac{f(k^e)[f(k^e) - (1+r)k^e]}{(1+r)[f(k^e) - (1+r)k^e] - rf(k^e)}$$
, and

(c) small when $\bar{S} \leq f(k^e)$.

The next proposition states the main result of this subsection.

Proposition 2. (The Dynamics of the Optimal Loan Scheme): Let Assumptions 1, 2, and 3 hold.

- A. The optimal loan scheme is weakly progressive over time.
- B. If the $f(\cdot)$ technology is very productive (as in Definition 2), then the optimal loan scheme is 15
 - (i) "strictly progressive" if the required initial investment in $\langle V, \bar{S} \rangle$ is "small",
 - (ii) "constant" if the required initial investment in $\langle V, \bar{S} \rangle$ is "large".
- C. If the $f(\cdot)$ technology is not very productive (see Definition 2), then the optimal loan scheme is
 - (i) "strictly progressive" if the required initial investment in $\langle V, \bar{S} \rangle$ is "small",
 - (ii) "progressive with a cap" if the required initial investment in $\langle V, \bar{S} \rangle$ is "moderate",
 - (iii) "constant" if the required initial investment in $\langle V, \bar{S} \rangle$ is "large".

Let us now discuss the intuition behind these results. Due to Lemma 2, in particular, $\alpha_t^* = 1$ at all t till graduation, the deposit with the MFI increases over time. Thus, with the passage of time, on the one hand, the borrower's savings increase, so that the loss from default increases, whereas on the other hand, the graduation date T_M^* gets closer, so the present discounted value of lifetime utility from repayment increases. This ensures that the DIC constraints get relaxed over time. Given Observation 2, this implies that the optimal loan scheme is weakly progressive.

There can be three cases – the optimal loan scheme is (a) constant over time – remains constant at the efficient amount k^e , this happens when k^e becomes incentive compatible from the very beginning, (b) progressive with a cap – increases till the optimum loan amount becomes the efficient amount k^e , after which it remains constant over time, this happens when k^e is not incentive compatible initially, and later becomes incentive compatible, or (c) strictly progressive – keeps on increasing over time, this happens when k^e never becomes incentive compatible. Next, we discuss the intuition behind these three kinds of optimum loan schemes and the respective parametric conditions under which we observe each of them.

Let us, first, understand the intuition behind the strictly progressive optimum loan scheme. When \bar{S} is small, k^e is not incentive compatible at any $t < T_M^* - 1$, as, in case of default with $f(k^e)$, she can graduate immediately and if she repays, she has to wait for at least one more period. Next, the optimum loan scheme is constant when the borrower chooses to repay k^e , even at period 1 (when her incentive is the lowest). Observe if she defaults at period 1, then she loses access to the $f(\cdot)$ technology (along with access to all future loans), but gains the amount she was supposed to repay i.e. k_0 . When the required initial investment for graduation \bar{S} is large, then multiple periods are required to accumulate that large \bar{S} . Hence, the loss from defaulting at period 1 – losing access to $f(\cdot)$ technology for all future dates is higher than the one time gain from default – the amount to be repaid. Finally, the optimum loan scheme is progressive with a cap when k^e is not incentive compatible initially and it is towards the end. This happens when $f(\cdot)$ is not very productive and \bar{S} is moderate. This is because, if she gets k^e from the very beginning then the time required to save \bar{S} is not that much, hence the loss from losing access to technology is lower than the gain from not repaying k^e . And, towards the end, when the borrower has a positive amount of savings with the MFI which she loses in case of default, k^e becomes incentive compatible.

Remark 1. We have assumed that at any period $t \in \{1, ..., T_M - 1\}$, the borrower is supposed to repay the entire amount she had borrowed at period t - 1 (along with interest). Observe, this is without loss of generality, in that any other contract which maximizes the borrower's lifetime

¹⁵In this discrete version, we can only find the sufficient conditions for the optimum loan scheme to be strictly progressive or progressive with a cap. We find both necessary and sufficient conditions in the continuous version. The continuous version can be found here.

utility subject to the MFI's no-loss condition would be identical.¹⁶ The reason, evident from the DIC constraints, is as follows. Observe, in our optimum contract, at any period t, the entire amount produced remains with the MFI – the borrower repays $(1+r)k_{t-1}$ and then saves $f(k_{t-1}) - (1+r)k_{t-1}$. The MFI returns her total savings, along with interest, at the successful termination of the contract. So, the contract does not depend on the timing of the repayment, alternatively, whether the borrower is repaying k_{t-1} at t^{th} period or at some $t+n^{th}$ period, where $t+n \in \{1, ..., T_M\}$ does not affect the DIC constraints (subject to limited liability). Therefore, the borrower gets the same amount of loan at each period. Her total savings remain the same, hence, her utility remains the same.

Remark 2. Suppose, at t=0, the borrower may choose whether she wants to keep her savings with the MFI locked-in or not. If she chooses the former, then as we have addressed, she cannot withdraw her savings with the MFI, till the successful termination of the contract. But, if she chooses the latter, she can withdraw (part of) her savings with the MFI anytime she wants to. Observe, this provision of withdrawal of her savings with the MFI, only affects the DIC constraints adversely which (weakly) reduces the optimum loan amounts. Hence, the time required to graduate (weakly) increases which (weakly) decreases the borrower's lifetime utility. Thus, the borrower is (weakly) better-off in choosing the 'locked-in' savings option. She is strictly better-off, when k^e is not incentive compatible at all dates when she chooses 'no locked-in' feature.

4 An Impossibility Result

We have analyzed a scenario where the borrower, on her own, has limited access to technologies. In particular, she does not have access to the neoclassical production technology $f(\cdot)$. We have shown that there exists an incentive compatible contract, and the optimum contract involves simultaneous borrowing and saving.

Now, we consider the case where the borrower, on her own, has access to all the technologies. We show that there does not exist any incentive compatible contract. ¹⁷ It is easy to see that when the MFI provides 'only credit' service, then there does not exist any incentive compatible loan contract. This is because the borrower would definitely default at a time when the amount to be repaid is the maximum. We then examine whether this result extends to the case where the MFI can also enforce "locked-in" savings. For that we consider the following candidate contract as, under this contract, the incentive for repayment is higher than that under any other contract (say for example, the borrower does not save with the MFI, or saves only a fraction of her net return at each period, or only a part of her savings with the MFI is confiscated etc.). Under the candidate contract, initially the MFI provides a small amount of loan. At each period, till the successful termination of the contract, if the borrower repays then she also has to save her entire net return with the MFI. The savings with the MFI is locked – at any period, if the borrower defaults then the entire amount saved till then would be confiscated. While it may seem that this candidate contract is incentive compatible – initially, the borrower repays to get bigger future loans, and later she repays to not lose her savings with the MFI – we show that it is not.

We prove it formally, below. But before that, we discuss the intuitive overview of the argument which makes it easy to follow the formal proof. That the candidate contract is not incentive compatible implies that there must exist a time period such that the present discounted value of

This conforms with the finding of Field and Pande (2008) that repayment schedule does not affect the default rate. We thank an anonymous referee for pointing this out.

¹⁷This result is an extension of the non-existence result of Bulow and Rogoff (1989) and more generally Rosenthal (1991) to our framework where the borrower saves up to invest in a non-convex technology $\langle V, \bar{S} \rangle$.

lifetime utility from default at that period is strictly higher than that from repayment. Next, we first identify such a time period and then prove its existence.

Consider the time period at which the amount to be repaid is strictly higher than the borrower's savings with the MFI till date. If there are multiple such time periods, then consider the time period which is the maximum of such periods, that is the time period closest to the graduation date when this inequality holds.¹⁸ We argue that the borrower's utility from default at this time period is strictly higher than that from repayment. For that, observe, if the borrower defaults at any period, then she loses (i) her savings with the MFI till date and (ii) access to all future loans; and she gains the amount to be repaid at that period.

We argue, step by step, that her gain is strictly higher than the loss due to both (i) and (ii). Consider (i). By the choice of default time, the loss due to her savings being confiscated is strictly lower than the gain from not repaying the said amount (as the amount to be repaid is higher than the savings). Consider (ii). One may ask, as the borrower also loses access to all future loans, what if at some future date, the borrower's wealth under the MFI contract becomes higher than her wealth when she operates on her own after defaulting at the said period? That is not possible for the following reasons. First, at the time of default, the borrower's total wealth in case of default is strictly higher than that in case of repayment. Second, by the choice of default period, at any future date, under the MFI contract, the loan amount is strictly lower than the borrower's savings with the MFI. Given these two consequences of the strategic choice of the default date, a recursive argument shows that at any future date (after defaulting at the said date), the borrower, on her own, would be able to invest the same amount the MFI would have enabled her to if she had repaid till then. Moreover, if she invests the same amount then her savings would be strictly higher than her savings under the MFI contract. Hence, her wealth would be strictly higher at any date after default. 19 Therefore, the borrower would either graduate faster in case of default or would graduate at the same date, but money in her hand at the time of graduation, in case of default would be strictly higher.

Next, we argue that the time period considered above exists. This is because at period 1, she is supposed to repay $(1+r)k_0(>0)$ and her savings with the MFI is zero.

4.1 Framework

The formal structure of the candidate contract, mentioned above, is as follows. At t = 0, the MFI offers a contract $\langle \{k_t(w_t)\}_{t=0}^{T_M}, T_M \rangle$, where w_t is the borrower's total savings with the MFI at period t, and T_M is the graduation date. The borrower either accepts or rejects it. In case she rejects, the game ends immediately. If she accepts, then she gets k_0 amount of loan and she invests that in the $f(\cdot)$ technology. At any period t, where $t \in \{1, ..., T_{M-1}\}$, if there were no default till date, the following things happen. At the beginning of the period $f(k_{t-1})$ is realized. The borrower then decides whether to repay or not. If she repays, then she also has to save the entire net return $(f(k_{t-1}) - (1+r)k_{t-1})$. If she defaults, then she loses access to all future loans and her savings with the MFI till date. Finally at T_M , at the beginning of the period $f(k_{T_M-1})$ is realized, the borrower decides whether to repay or not. If she repays, then she gets back her entire savings with the MFI till date. If she defaults, then the MFI confiscates her entire savings with it till date.

 $[\]overline{^{18}}$ Here, we use the fact that the borrower graduates at a finite date, in case of repayment.

¹⁹She may optimally invest a different amount, in which case her wealth would be even higher.

²⁰As graduation is welfare improving (Assumption 3), it can easily be shown that a contract which is not terminated at a finite date, successfully, is not incentive compatible.

4.2 Analysis

Like before, we start our analysis with the problem of the borrower when she operates on her own after the termination of a contract with the MFI. Since, we are interested in the non-existence of any incentive compatible contract, we analyze the borrower's optimum choice after she defaults at some $\tau \in \{1, ..., T_M\}$. Observe, given the structure of this candidate contract, she defaults with $f(k_{\tau-1})$, we denote that by ω . Thus, the problem of the borrower, after she defaults at period τ with ω amount of money is to

$$\begin{split} \mathcal{U}^{A}(\omega) &\equiv \underset{\{\{k_{t}^{A}(\tau)\}_{t=\tau}^{T^{A}(\tau)-1}, \{\beta_{t}^{A}(\tau)\}_{t=\tau}^{T^{A}(\tau)-1}, T^{A}(\tau)\}}{\operatorname{Maximise}} (1-\beta_{\tau}^{A}(\tau))[\omega-k_{\tau}^{A}(\tau)] \\ &+ \sum_{t=\tau+1}^{T^{A}(\tau)-1} \delta^{t-\tau}(1-\beta_{t}^{A}(\tau))[f(k_{t-1}^{A}(\tau))+(1+r)s_{t-1}^{A}(\tau)-k_{t}^{A}(\tau)] \\ &+ \delta^{T^{A}(\tau)-\tau}\Big[f(k_{T^{A}(\tau)-1}^{A}(\tau))+(1+r)s_{T^{A}(\tau)-1}^{A}(\tau)-\bar{S}+V\Big] \\ \text{where } s_{\tau}^{A}(\tau) &\equiv \beta_{\tau}^{A}(\tau)(\omega-k_{\tau}^{A}(\tau)), \\ \text{and } \forall t \in \{\tau+1,...,T^{A}(\tau)-1\} \quad s_{t}^{A}(\tau) = \beta_{t}^{A}(\tau)[f(k_{t-1}^{A}(\tau))+(1+r)s_{t-1}^{A}(\tau)-k_{t}^{A}(\tau)] \\ \text{Subject to} \quad (i) \quad k_{\tau}^{A}(\tau) \leq \omega \text{ and } k_{t}^{A}(\tau) \leq f(k_{t-1}^{A}(\tau))+(1+r)s_{t-1}^{A}(\tau), \quad \forall t \in \{\tau+1,...,T^{A-1}(\tau)\}, \\ (ii) \quad \beta_{t}^{A}(\tau) \in [0,1] \quad \forall t \in \{\tau,...,T^{A}(\tau)-1\}, \\ (iii) \quad f(k_{T^{A}(\tau)-1}^{A}(\tau))+(1+r)s_{T^{A}(\tau)-1}^{A}(\tau) \geq \bar{S}. \end{split}$$

where $k_t^A(\tau)$ is the amount of investment in $f(\cdot)$ technology at period t after defaulting at period τ . Like before, $\beta_t^A(\tau)$ is the savings rate and $T^A(\tau)$ is the time of graduation.

The first result characterizes the graduation period. Like before, the borrower chooses to graduate as soon as her savings become no less than the required initial investment in $\langle V, \bar{S} \rangle$. We prove this formally in the next lemma.

Lemma 4. Consider any optimal scheme $\langle \{k_t^A(\tau)\}_{t=\tau}^{T^A(\tau)-1}, \{\beta_t^A(\tau)\}_{t=\tau}^{T^A(\tau)-1}, T^A(\tau) \rangle$, then $T^A(\tau)$ is such that

i if $f(k_{\tau-1}) \geq \bar{S}$, the she graduates immediately, i.e. $T^A(\tau) = \tau$,

ii otherwise, she graduates as soon as possible:

$$f(k_{T^A(\tau)-2}^A(\tau)) + (1+r)s_{T^A(\tau)-2}^A(\tau) < \bar{S} \le f(k_{T^A(\tau)-1}^A(\tau)) + (1+r)s_{T^A(\tau)-1}^A(\tau). \tag{4.1}$$

Next, we characterize the optimum $\{k_t^A(\tau)\}_{t=\tau}^{T^A(\tau)-1}$ and $\{\beta_t^A(\tau)\}_{t=0}^{T^A(\tau)-1}$. As $f(\cdot)$ is more productive than the savings technology when the amount of investment is lower than k^e , at any period, the borrower saves only if her investment in $f(\cdot)$ technology is k^e . Now due to our assumption that graduation is welfare improving (Assumption 3), the borrower has a linear utility function and discounts the future as the inverse of interest rate (Assumption 1), she accumulates the required amount to graduate \bar{S} as soon as possible – she does not consume before $T^A(\tau)$. We show this, formally, in the next lemma.

Lemma 5. At the optimum,

$$\begin{cases} if \ \omega < k^e & k_{\tau}(\tau) = \omega, \ and \ \beta_{\tau}^A(\tau) \in [0,1] \\ \forall t \in \{\tau+1,...,T^A(\tau)-1\}, \begin{cases} k_t^A = f(k_{t-1}^A) + (1+r)s_{t-1}^A, \\ and \ \beta_t^A \in [0,1] & if \ f(k_{t-1}^A) + (1+r)s_{t-1}^A \le k^e \\ k_t^A = k^e, \ and \ \beta_t^A = 1 & otherwise \end{cases}$$

$$if \ \omega \ge k^e \quad \forall t \in \{\tau,...,T^A(\tau)-1\}, \ k_t^A = k^e, \ and \ \beta_t^A = 1.$$

Now, we are in a position, to state the main result of this section.

Proposition 3. There does not exist any DIC contract.

5 Conclusion

Many scholars, e.g. Armendàriz and Morduch (2005), Roodman (2009), among others argue that MFIs should provide not only credit but also other financial services like savings, insurance, etc. In fact, Rhyne (November 2, 2010) directly links the crisis that happened in the microfinance sector in the Indian state of Andhra Pradesh to lack of deposit collection. Many MFIs are broadening their initial focus on microcredit to include the provision of savings (and other) products (Karlan et al., 2014). In this paper, we develop a theoretical model where the MFI provides not just credit but also access to other services in particular a savings facility. This savings service coupled with the credit service help a poor borrower to accumulate a lumpsum amount which enables her to graduate. Thus we provide *one* explanation where savings coupled with credit indeed improve borrower's utility beyond the level achievable when only credit is provided.

Acknowledgement: We especially thank Dilip Mookherjee for numerous discussions, comments, questions, and suggestions. In this regard Dyotona Dasgupta acknowledges The World Bank for Robert S. McNamara fellowship and the Institute for Economic Development, Boston University for hosting her. We also thank Shyamal Chowdhury, Bhaskar Dutta, Parikshit Ghosh, Dhritiman Gupta, Priyanka Kothari, Dushyant Kumar, Tridip Ray, and Arunava Sen for their comments. All errors are our own.

Appendix A

Proof if Lemma 1 We only consider the problem of the borrower after successful termination of a contract. Her problem after default (unsuccessful termination) at any period $\tau \leq T_M$ can be solved similarly.

i. We prove this by contradiction. Suppose not. The money in her hand at the successful termination of the contract T_M is ω and $\omega \geq \bar{S}$, and the borrower optimally chooses to graduate at some $T > T_M$. Her present discounted value of lifetime utility (evaluated at T_M) in that case is

$$\omega + \delta^{T-T_M}(V - \bar{S}).$$

Now consider her present discounted value of lifetime utility (evaluated at T_M), if she had chosen to graduate at T_M :

$$\omega + (V - \bar{S})$$

Since, $\omega + (V - \bar{S}) > \omega + \delta^{T - T_M}(V - \bar{S})$, the original choice to graduate at some $T > T_M$, could not have been optimum. Hence, if the money in her hand at the time of termination of the contract is no less than \bar{S} , then she optimally chooses to graduate immediately.

ii. (a) It is immediate from the proof of Part (i).

ii. (b) Observe due to our assumption of linear utility function and Assumption 1, the savings rates affect the borrower's lifetime utility only via the graduation date. We have shown that she is better off with a decrease in graduation date which is possible by increasing savings. Hence, optimally the borrower would choose $\beta_t^A = 1 \ \forall t \in \{T_M, ..., T-1\}$.

Proof of Lemma 2. Following the proof of Lemma 1, it is easy to see that *given* a sequence of loan amounts $\{k_t\}_{t=1}^{T_M-1}$, at any $t \in \{1,...,T_M-1\}$, the borrower optimally chooses to save the entire money in her hand, i.e. $\alpha_t^* + \beta_t^* = 1$. Now, we argue that the borrower saves the entire money in her hand with the MFI, i.e. $\alpha_t^* = 1$ and $\beta_t^* = 0$ at all $t \in \{1,...,T_M-1\}$. We prove this by contradiction.

Let $\langle \{k_t^*\}_{t=0}^{T_M-1}, \{\alpha_t^*\}_{t=1}^{T_M-1}, \{\beta_t^*\}_{t=1}^{T_M-1}, T_M, \{\beta_t^{A^*}\}_{t=T_M}^{T^*-1}, T^* \rangle$ be a scheme where $\beta_t^{A^*}, T^*, k_t^*, \alpha_t^*$ and β_t^* are optimally chosen and contrary to the claim, $\exists \tau \in \{1, ..., T_M-1\}$ such that $\alpha_\tau^* < 1$ and hence, from the argument above $\beta_\tau^* > 0$. Consider a new contract $\langle \{k_t'\}_{t=0}^{T_M'-1}, \{\alpha_t'\}_{t=1}^{T_M'-1}, \{\beta_t'\}_{t=1}^{T_M'-1}, T_M', \{\{\beta_t^{A'}\}_{t=T_M'}^{T'-1}, T^* \rangle$ which is identical to the original contract except $\alpha_\tau' = \alpha_\tau^* + \epsilon, \beta_\tau' = \beta_\tau^* - \epsilon$ and

$$k_{\tau}^{'} = \begin{cases} k_{\tau}^* + \Delta & \text{if } k_{\tau}^* < k^e \\ k_{\tau}^* & \text{otherwise.} \end{cases}$$

Hence, under this new contract, at period τ , the borrower saves higher amount with the MFI. We argue that it is possible to choose a $\Delta > 0$, such that this new contract satisfies DIC constraints at all $t \in \{1, ..., T_M\}$ and also provides (weakly) higher utility than the original contract.

Under this new contract, at period $\tau + 1$, the borrower will be willing to repay higher than k_{τ}^* as her savings with the MFI and hence loss from default is higher. Hence, $\exists \Delta > 0$ such that DIC constraint at period $\tau + 1$ is satisfied. Also, observe for that Δ , under this new contract, the DIC constraint at any $t \in \{1, ... \tau\}$ is identical to that of the original contract, and the DIC constraint at any $t \in \{\tau + 2, ..., T_M\}$ gets relaxed. Thus, the new contract satisfies DIC constraints at all

 $t \in \{1, ..., T_M\}.$

Under this new contract, at period τ , the borrower gets (weakly) higher amount of loan, hence at period $\tau+1$, the net return is (weakly) higher. Therefore, the new contract provides her (weakly) higher utility and also satisfies DIC constraints at all t. Without loss of generality, we assume that if a contract provides (weakly) higher utility than another contract, then the former is the optimum. Hence, the original contract could not have been optimum.

Proof of Lemma 3. We, first, show by contradiction that

$$S_{T_M^*}^* \equiv \sum_{t=1}^{T_M^*} (1+r)^{T_M^*-t} [f(k_{t-1}^*) - (1+r)k_{t-1}^*] \ge \bar{S}.$$

Suppose not and $\langle \{k_t^*\}_{t=0}^{T_M^*-1}, \{\alpha_t^*\}_{t=1}^{T_M^*-1}, \{\beta_t^*\}_{t=1}^{T_M^*-1}, T_M^*, \{\{\beta_t^{A^*}\}_{t=T_M^*}^{T^*-1}, T^* \rangle$ is an optimum scheme and

$$S_{T_M^*}^* \equiv \sum_{t=1}^{T_M^*} (1+r)^{T_M^*-t} [f(k_{t-1}^*) - (1+r)k_{t-1}^*] < \bar{S}.$$

Given Lemma 1, this implies that the borrower graduates at $T^* > T_M^*$ where

$$\sum_{t=1}^{T_M^*} (1+r)^{T^*-t} [f(k_{t-1}^*) - (1+r)k_{t-1}^*] \ge \bar{S} > \sum_{t=1}^{T_M^*} (1+r)^{T^*-1-t} [f(k_{t-1}^*) - (1+r)k_{t-1}^*].$$

The present discounted value of the borrower's lifetime utility under this scheme (evaluated at period 0) is

$$\delta^{T^*} \left[\sum_{t=1}^{T_M^*} (1+r)^{T^*-t} [f(k_{t-1}^*) - (1+r)k_{t-1}^*] - \bar{S} + V \right].$$

Now, we construct a new scheme $\langle \{k_t^{'}\}_{t=0}^{T_M^{'}-1}, \{\alpha_t^{'}\}_{t=1}^{T_M^{'}-1}, \{\beta_t^{'}\}_{t=1}^{T_M^{'}-1}, T_M^{'}, \{\{\beta_t^{A^{'}}\}_{t=T_M^{'}}^{T^{'}-1}, T^{'}\rangle$, where

$$\begin{split} T_M' &= T_M^* + 1, \\ k_t' &= k_t^* \quad \forall t \in \{0,...., T_M^* - 1\} \quad \text{and} \ k_{T_M' - 1} = k_{T_M^* - 1}, \\ \alpha_t' &= 1 \quad \forall t \in \{1,...., T_M' - 1\}, \quad \beta_t' = 0 \quad \forall t \in \{1,...., T_M' - 1\}, \\ \beta_t^{A'} &= 1 \quad \forall t \in \{T_M', ..., T'\}, \\ T' &= T^*. \end{split}$$

First observe,
$$\sum_{t=1}^{T_M'} (1+r)^{T_M'-t} [f(k_{t-1}') - (1+r)k_{t-1}']$$

$$= f(k_{T_M^*-1}^*) - (1+r)k_{T_M^*-1}^* + \sum_{t=1}^{T_M^*} (1+r)^{T_M^*-t} [f(k_{t-1}^*) - (1+r)k_{t-1}^*]$$

$$> \sum_{t=1}^{T_M^*} (1+r)^{T_M^*-t} [f(k_{t-1}^*) - (1+r)k_{t-1}^*],$$

where the first equality is from the construction and the second equality from the fact that $f(k_{T_M}^{*}-1)-(1+r)k_{T_M}^{*}-1>0$.

Next observe,
$$\forall \tau \in \{1, ..., T_M'\}$$

$$\delta^{T'-\tau} \mathcal{U}^A \left(\sum_{t=1}^{T_M'} (1+r)^{T_M'-t} [f(k_{t-1}') - (1+r)k_{t-1}'] \right)$$
$$> \delta^{T^*-\tau} \mathcal{U}^A \left(\sum_{t=1}^{T_M^*} (1+r)^{T_M^*-t} [f(k_{t-1}^*) - (1+r)k_{t-1}^*] \right)$$
$$\geq \mathcal{U}^A (f(k_{\tau-1})),$$

where the first inequality is from the construction, as stated above, and the second inequality from the DIC constraints of the original contract.

Therefore, the borrower's lifetime utility $\delta^{T'}\left[\sum_{t=1}^{T'_M}(1+r)^{T'_M-t}[f(k'_{t-1})-(1+r)k'_{t-1}]\right]$ is strictly

higher under this new scheme than the original scheme, and DIC constraints are satisfied at all t under this new contract. Hence, the original scheme could not have been optimum.

The other part:
$$S_{T_M^*-1}^* \equiv \sum_{t=1}^{T_M^*-1} (1+r)^{T_M^*-1-t} [f(k_{t-1}^*) - (1+r)k_{t-1}^*] < \bar{S}$$
 can be shown similarly.

Proof of Proposition 2. A. We prove this by contradiction.

Suppose not. And, $\exists \tau \in \{0, ..., T_M^* - 1\}$ and $\tau + 1$ such that $k_{\tau+1}^* < k_{\tau}^* \le k^e$. This implies k_{τ}^* must not be incentive compatible at period $\tau + 2$, i.e.

$$\delta^{T_{M}^{*}-(\tau+2)}\mathcal{U}^{A}\left(\sum_{t=1}^{T_{M}^{*}}(1+r)^{T_{M}^{*}-t}[f(k_{t-1}^{*})-(1+r)k_{t-1}^{*}]-[f(k_{\tau+1}^{*})-(1+r)k_{\tau+1}^{*}]+[f(k_{\tau}^{*})-(1+r)k_{\tau}^{*}]\right) < \mathcal{U}^{A}(f(k_{\tau}^{*}))$$

The above inequality compares the borrower's present discounted value of lifetime utility (evaluated at period $\tau + 2$) from repayment with that from default at period $\tau + 2$, if she had received k_{τ}^* amount of loan at period $\tau + 1$, instead of $k_{\tau+1}^*$. As, k_{τ}^* is not incentive compatible at period $\tau + 2$, hence, the utility from repayment must be strictly lower than that from default.

²¹Recall, $(1+r)k_t$ is repaid at period t+1.

Now, k_{τ}^* is incentive compatible at period $\tau + 1$, hence

$$\delta^{T_M^* - (\tau + 1)} \mathcal{U}^A \Big(\sum_{t=1}^{T_M^*} (1 + r)^{T^* - t} [f(k_{t-1}^*) - (1 + r)k_{t-1}^*] \Big) \ge \mathcal{U}^A (f(k_{\tau}^*)).$$

Therefore, we must have

$$\delta \ \mathcal{U}^{A} \left(\sum_{t=1}^{T_{M}^{*}} (1+r)^{T_{M}^{*}-t} [f(k_{t-1}^{*}) - (1+r)k_{t-1}^{*}] \right)$$

$$> \mathcal{U}^{A} \left(\sum_{t=1}^{T_{M}^{*}} (1+r)^{T_{M}^{*}-t} [f(k_{t-1}^{*}) - (1+r)k_{t-1}^{*}] - [f(k_{\tau+1}^{*}) - (1+r)k_{\tau+1}^{*}] + [f(k_{\tau}^{*}) - (1+r)k_{\tau}^{*}] \right)$$

which is not possible because $\delta < 1$, $\mathcal{U}^A(x)$ is strictly increasing in x, and

$$\sum_{t=1}^{T_M^*} (1+r)^{T_M^*-t} [f(k_{t-1}^*) - (1+r)k_{t-1}^*] - [f(k_{\tau+1}^*) - (1+r)k_{\tau+1}^*] + [f(k_{\tau}^*) - (1+r)k_{\tau}^*]$$

$$> \sum_{t=1}^{T_M^*} (1+r)^{T_M^*-t} [f(k_{t-1}^*) - (1+r)k_{t-1}^*]$$

as $k_{\tau+1}^* < k_{\tau}^* \le k^e$ which implies $f(k_{\tau}^*) - (1+r)k_{\tau}^* > f(k_{\tau+1}^*) - (1+r)k_{\tau+1}^*$.

Hence, we have proved by contradiction that the optimum loan amount is (weakly) progressive.

For **Part B.** and **Part C.**, we note that the optimum loan scheme is a constant when k^e satisfies the DIC constraint at period 1 which requires

$$\mathcal{U}^{A}\left(\sum_{t=1}^{T_{M}^{*}}(1+r)^{T_{M}^{*}-t}[f(k^{e})-(1+r)k^{e}]\right) \geq \mathcal{U}^{A}\left(f(k^{e})\right).$$

The necessary and sufficient condition for this inequality is (we explain the rationale below)

$$\mathcal{T} \le \mathcal{T}^{\mathcal{A}},\tag{5.1}$$

where \mathcal{T} and $\mathcal{T}^{\mathcal{A}}$ are defined as follows:

$$\sum_{t=1}^{\mathcal{T}} (1+r)^{T_M^* - t} [f(k^e) - (1+r)k^e] = \bar{S} \quad \text{and} (1+r)^{\mathcal{T}^{\mathcal{A}}} f(k^e) = \bar{S}.$$
 (5.2)

Observe, $\lceil \mathcal{T} \rceil = T_M^*$ and $\lceil \mathcal{T}^A \rceil = T^A(1)^{22}$.

Therefore, (5.1) implies either the borrower graduates earlier in case of repayment, if $T_M^* < T^A(1)$, or even if she graduates at the same time, her total wealth at the time of graduation in case of repayment is no less than that in case of default. Hence, (5.1) is the necessary and sufficient condition for an optimal loan sequence to be a constant.

Recall, $T^A(\tau)$ is the optimally chosen time of graduation when the borrower defaults at period 1. Also note that $\lceil x \rceil$ denotes the ceiling function of x, i.e. $\lceil x \rceil$ is equal to the least integer greater than or equal to x.

From (5.2), we find

$$(1+r)^{\mathcal{T}} = \frac{r\bar{S}}{f(k^e) - (1+r)k^e} + 1$$
, and $(1+r)^{\mathcal{T}^{\mathcal{A}}} = \frac{(1+r)r\bar{S}}{f(k^e)}$.

Simplifying the above we find

$$\mathcal{T} \le \mathcal{T}^{\mathcal{A}} \quad \Leftrightarrow \quad \frac{f(k^e)[f(k^e) - (1+r)k^e]}{(1+r)[f(k^e) - (1+r)k^e] - rf(k^e)} \le \bar{S}.$$

i.e. the optimum loan scheme is *constant* when \bar{S} is large (see Definition 3).

In this discrete version, we can only find the sufficient condition for the optimum loan sequence to be progressive with a cap. 23 The optimum loan sequence is strictly progressive if k^e is not be incentive compatible at $T_M^* - 1^{24}$ The sufficient condition for that is

$$\bar{S} < f(k^e)$$
.

This ensures k^e is not incentive compatible at $T_M^* - 1$ if the borrower defaults at that period with $f(k^e)$ then she graduates immediately, and in case she repays then she would graduate at T_M^* . 25 Thus, borrower's utility is higher from default.

Similarly, the sufficient condition for the optimum loan sequence to be a constant towards the end (i.e. the optimum loan sequence is either a constant or progressive with a cap) is

$$(1+r)f(k^e) \le \bar{S}$$

as this ensures that k^e is incentive compatible at period $T_M^* - 1$ and hence at T_M^* as well. Now, $(1+r)f(k^e) < \frac{f(k^e)[f(k^e) - (1+r)k^e]}{(1+r)[f(k^e) - (1+r)k^e] - rf(k^e)}$ only when $f(k^e) < (1+r)(2+r)k^e$, that is only when the $f(\cdot)$ is not very productive.

Combining all the conditions, we have derived so far, we infer that

- If the $f(\cdot)$ technology is very productive (as in Definition 2), the the optimum loan scheme is
 - if \bar{S} is small. - strictly progressive
 - if \bar{S} is large. - constant
- If the $f(\cdot)$ technology is not very productive (Definition 2), the the optimum loan scheme is
 - if \bar{S} is small, - strictly progressive
 - if \bar{S} is moderate, - progressive with a cap
 - if \bar{S} is large. - constant

Hence proved.

Proof of Lemma 4.

 $^{^{23}}$ We find both the necessary and sufficient conditions for an optimum loan sequence to be $strictly\ progressive$ and progressive with a cap, in the continuous version which can be found here.

Otherwise, given Part A of this Proposition, the borrower would get k^e at $T_M^* - 1$ and also at T_M^* , which will make the optimum loan sequence to be a constant towards the end.

²⁵Given Lemma 3 which implies the borrower's total wealth at $T_M^* - 1$ after repayment must be lower than \bar{S} .

- i. It can be shown following the argument of the proof of Lemma 1 Part i.
- ii. The second inequality is the graduation constraint which ensures that the borrower has enough money in her hand to graduate.

We prove the first inequality by contradiction. Suppose $\langle \{k_t^A(\tau)\}_{t=\tau}^{T^A(\tau)-1}, \{\beta_t^A(\tau)\}_{t=\tau}^{T^A(\tau)}, T^A(\tau) \rangle$ is an optimal scheme and

$$f(k_{T^A(\tau)-2}^A(\tau)) + (1+r)s_{T^A(\tau)-2}^A(\tau) > \bar{S}.$$

Then consider the scheme $\langle \{k_t^A(\tau)\}_{t=\tau}^{T^A(\tau)-2}, \{\beta_t^A(\tau)\}_{t=\tau}^{T^A(\tau)-2}, T^A(\tau)-1 \rangle$. We argue that the borrower's utility under this new scheme is higher. Due to Assumption 1 and the linear utility function, observe, it is sufficient to show the following.

$$\begin{split} &f(k_{T^A-2}^A) + (1+r)s_{T^A-2}^A - \bar{S} + V > [f(k_{T^A-2}^A + (1+r)s_{T^A-2}^A - k_{T^A-1}^A] + \delta \Big[f(k_{T^A-1}^A) - \bar{S} + V\Big] \\ \Rightarrow & (1-\delta)(V-\bar{S}) > \delta [f(k_{T^A-1}^A) - (1+r)k_{T^A-1}^A] \\ \Rightarrow & V-\bar{S} > \frac{\delta}{1-\delta} [f(k_{T^A-1}^A) - (1+r)k_{T^A-1}^A] \end{split}$$

This is true because of Assumption 3 and the definition k^e . Hence, the original scheme could not have been optimum which is a contradiction.

Proof of Lemma 5. Step 1. We first consider the characterization of $\{k_t^A\}_{t=\tau}^{T^A-1}$. We claim that at the optimum, the individual invests k^e in $f(\cdot)$ technology whenever possible, or would invest the maximum amount feasible. We prove this by contradiction.

Consider any period t such that $f(k_{t-1}^A) + (1+r)s_{t-1}^A \leq k^e$ (if $t=\tau$, then $\omega \leq k^e$). Suppose

$$k_t^A < f(k_{t-1}^A) + (1+r)s_{t-1}^A \le k^e$$
.

Then if the individual increases k_t^A marginally and consumes the increased amount immediately at t+1, then the change in present discounted value of lifetime utility would be

$$-(1-\beta_t^A) + \delta[f'(k_t^A) - (1+r)\beta_t^A] = \delta f'(k_t^A) - 1 = (1+r)[f'(k_t^A) - (1+r)] > 0.$$

As $f'(k_t^A) > (1+r)$ when $k_t^A > k^e$. Similarly, it can be shown that the borrower would never invest more than k^e in $f(\cdot)$ technology.

Step 2. Now we consider the optimum choice of $\{\beta_t^A\}_{t=\tau}^{T^A-1}$. To prove this, we assume that whenever the individual is indifferent between choosing $\beta^A=1$ and any $\beta^A\in[0,1)$, she chooses $\beta^A=1$. Suppose, contrary to the claim of the lemma, $\exists \tilde{t}\in\{\tau,...,T^A-1\}$ such that $\beta_t^A<1$. Case 1 At that period the borrower invests k^e in the $f(\cdot)$, i.e. $f(k_{\tilde{t}-1}^A)+(1+r)s_{\tilde{t}-1}^A>k^e$ (if $\tilde{t}=\tau$

Case 1 At that period the borrower invests k^e in the $f(\cdot)$, i.e. $f(k_{\tilde{t}-1}^A) + (1+r)s_{\tilde{t}-1}^A > k^e$ (if $\tilde{t} = \tau$ then $\omega > k^e$). Then the proof is very similar to the proof of Lemma 1 Part ii. (b), so we skip it here.

Case 2. At \tilde{t} , $f(k_{\tilde{t}-1}^A) + (1+r)s_{\tilde{t}-1}^A \leq k^e$ (if $\tilde{t} = \tau$ then $\omega \leq k^e$). Observe, the individual's present discounted value of lifetime utility is independent of the choice of $\beta_{\tilde{t}}^A$, as the borrower invests entire money in her hand in $f(\cdot)$ technology. Hence, the individual chooses $\beta_t^A(\tau) = 1$ $\forall t \in \{\tau, ..., T^A(\tau) - 1\}$.

For brevity, we will often write k_t^A instead of $k_t^A(\tau)$, similarly β_t^A instead of $\beta_t^A(\tau)$ and T^A instead of $T^A(\tau)$.

Proof of Proposition 3. Observe, if the borrower defaults at any $\tau \in \{1,...,T_M\}$, she loses $(1+r)w_{\tau-1}$ where

$$w_{\tau-1} = \sum_{t=1}^{\tau-1} (1+r)^{\tau-1-t} [f(k_{t-1}) - (1+r)k_{t-1}]$$

this is because at any period t, she saves $f(k_{t-1}) - (1+r)k_{t-1}$ - the net return after repayment. So, her total savings at $\tau - 1$ is $w_{\tau - 1}$. Now, she gets $k_{\tau - 1}$ amount of loan at period $\tau - 1$. So, if she defaults at period τ , then she gains the amount to be repaid, i.e. $(1+r)k_{\tau-1}$ and loses her total savings with the MFI till date, i.e. $(1+r)w_{\tau-1}$ (along with access to all future loans).

We argue that there exists a τ such that

$$\delta^{\tau} \left[(1+r)k_{\tau-1} - (1+r)w_{\tau-1} \right] > 0 \tag{5.3}$$

and the borrower defaults at such τ . If there are multiple such τ 's, we argue that the borrower must default at the maximum of such τ 's. Let us denote that t by $\hat{\tau}$. That is, the borrower would definitely default at a $\hat{\tau}$ where

$$\delta^{\hat{\tau}} \left[(1+r)k_{\hat{\tau}-1} - (1+r)w_{\hat{\tau}-1} \right] > 0 \tag{5.4}$$

$$\delta^{\tau} \left[(1+r)k_{\hat{\tau}-1} - (1+r)w_{\hat{\tau}-1} \right] > 0$$
and if $\hat{\tau} < T_M$, $\delta^t \left[(1+r)k_{t-1} - (1+r)w_{t-1} \right] < 0$ $\forall t \in {\hat{\tau} + 1, ..., T}$ (5.5)

Step 1. Observe that such a $\hat{\tau}$ exists as $k_0 > 0$ – the borrower gets a loan at t = 0 which implies $(1+r)k_0>0$ and savings at t=0 is zero, i.e. $(1+r)w_0=0$ which implies at t=1

$$\delta[(1+r)k_0 - (1+r)s_0] > 0.$$

For further steps, without loss of generality, we assume that the borrower has no incentive to deviate at any t, where $t \in \{\hat{\tau} + 1, ..., T_M\}$ as, if she had such an incentive, then the scheme is not DIC and there is nothing to prove.²⁷

Step 2. Observe if $\hat{\tau} = T_M$, then we are done. As the borrower would definitely default at T_M :

$$\mathcal{U}^{A}\Big(f(k_{T_{M}-1})\Big) \ge \mathcal{U}^{A}\Big(f(k_{T_{M}-1}) - (1+r)k_{T_{M}-1} + (1+r)w_{T_{M}-1}\Big)$$

where the inequality is coming from the fact that $\hat{\tau} = T_M$ implies $(1+r)k_{T_M-1} > (1+r)w_{T_M-1}$ and $\mathcal{U}^A(x)$ is strictly increasing x.

Step 3. Consider the case where $\hat{t} < T_M$. Observe (5.4) implies that at period \hat{t} , the agent's wealth from default i.e. $f(k_{\hat{\tau}-1})$ (which is money in her hand at the time of default at that period) is higher than the wealth from repayment i.e. $f(k_{\hat{\tau}-1}) - (1+r)k_{\hat{\tau}-1} + (1+r)w_{\hat{\tau}-1}$.

But does there exist a $t > \hat{\tau}$ such that her wealth under the MFI contract becomes higher than that when she is on her own after defaulting period $\hat{\tau}$? That is, does there exist a $t > \hat{\tau}$ such that

$$f(k_{t-1}) - (1+r)k_{t-1} + (1+r)w_{t-1} > f(k_{t-1}^A(\hat{\tau})) + (1+r)s_{t-1}^A(\hat{\tau}),$$

where $k_{t-1}^A(\hat{\tau})$ denotes investment in $f(\cdot)$ technology and $s_{t-1}^A(\hat{\tau})$ denotes the total savings at $t-1^{th}$

²⁷Observe, this assumption is without loss of generality: It can be shown that $(1+r)k_{t-1} - (1+r)w_{t-1} > 0$ is a necessary condition for default at any t, so by the definition of $\hat{\tau}$, the borrower would not default at any $t \in {\hat{\tau} + 1, ..., T_M}$. However, for brevity, we have just assumed it here.

period when she operates on her own after defaulting at period $\hat{\tau}$.

The borrower, in that case, must not default at $\hat{\tau}$. So, to show that the agent would indeed default at \hat{t} , it is sufficient to show²⁸

$$f(k_{t-1}^A(\hat{\tau})) + (1+r)s_{t-1}^A(\hat{\tau}) > f(k_{t-1}) - (1+r)k_{t-1} + (1+r)w_{t-1} \quad \forall t \in {\{\hat{\tau}+1, ..., T_M\}}.$$
 (5.6)

Suppose (5.6) is not true and $\exists t \in \{\hat{\tau} + 1, ..., T_M\}$ such that

$$f(k_{t-1}^A(\hat{\tau})) + (1+r)s_{t-1}^A(\hat{\tau}) < f(k_{t-1}) - (1+r)k_{t-1} + (1+r)w_{t-1}.$$

If there are multiple such t's, then we consider the period which is the smallest, denote that by $\underline{\tau}$, that is either $\tau = \hat{\tau} + 1$ or

$$f(k_{t-1}^A(\hat{\tau})) + (1+r)s_{t-1}^A(\hat{\tau}) > f(k_{t-1}) - (1+r)k_{t-1} + (1+r)w_{t-1} \quad \forall t \in {\{\hat{\tau}+1, \dots, \underline{\tau}-1\}}.$$

Step 4. First we show that $\underline{\tau} > \hat{\tau} + 1$. Suppose not then

$$f(k_{\hat{\tau}}^{A}(\hat{\tau})) + (1+r)s_{\hat{\tau}}^{A}(\hat{\tau}) < f(k_{\hat{\tau}}) - (1+r)k_{\hat{\tau}} + (1+r)w_{\hat{\tau}}.$$
 (5.7)

We show a contradiction below. For that observe by the definition of $\hat{\tau}$

$$\delta^{\hat{\tau}} \left[(1+r)k_{\hat{\tau}-1} - (1+r)w_{\hat{\tau}-1} \right] > 0 > \delta^{\hat{\tau}+1} \left[(1+r)k_{\hat{\tau}} - (1+r)w_{\hat{\tau}} \right] \quad \Rightarrow \quad k_{\hat{\tau}} < f(k_{\hat{\tau}-1}).$$

Now, the R.H.S. of (5.7) increases with $k_{\hat{\tau}}$ when $k_{\hat{\tau}} < k^e$ and is the maximum at $k_{\hat{\tau}} = k^e$. so it is sufficient to show the contradiction, i.e. L.H.S. is higher than the maximum value of R.H.S., (i) for $k_{\hat{\tau}} = f(k_{\hat{t}-1})$ when $f(k_{\hat{t}-1}) < k^e$ (as we have just shown above that $k_{\hat{t}}$ is bounded above by $f(k_{\hat{\tau}-1})$) and (ii) for $k_{\hat{\tau}} = k^e$ when $f(k_{\hat{\tau}-1}) \ge k^e$.

(i) $f(k_{\hat{\tau}-1}) < k^e$. Let $k_{\hat{\tau}} = f(k_{\hat{t}-1})$, then from (5.7) and the optimum choice at autarky, we have

$$f(k_{\hat{\tau}}) - (1+r)k_{\hat{\tau}} + (1+r)w_{\hat{\tau}} > f(f(k_{\hat{\tau}-1}^A(\hat{\tau}))) + (1+r)s_{\hat{t}}^A(\hat{\tau}) = f(f(k_{\hat{\tau}-1}))$$

$$\Rightarrow f(f(k_{\hat{\tau}-1})) - (1+r)f(k_{\hat{\tau}-1}) + (1+r)w_{\hat{\tau}} > f(f(k_{\hat{\tau}-1}))$$

$$\Rightarrow - (1+r)f(k_{\hat{\tau}-1}) + (1+r)[f(k_{\hat{\tau}-1}) - (1+r)k_{\hat{\tau}-1}] + (1+r)^2w_{\hat{\tau}-1} > 0$$

$$\Rightarrow \delta^{\hat{\tau}} \left[(1+r)k_{\hat{\tau}-1} - (1+r)w_{\hat{\tau}-1} \right] < 0.$$

where the second inequality is coming from replacing $f(k_{\hat{\tau}-1})$ with $k_{\hat{\tau}}$, the third inequality is coming from the definition of $w_{\hat{\tau}}$. Observe, the last inequality contradicts the definition of $\hat{\tau}$.

(ii) $f(k_{\hat{\tau}-1}) \ge k^e$. Let $k_{\hat{\tau}} = k^e$, then from (5.7) and the optimum choice at autarky, similarly

$$\begin{split} f(k^e) - (1+r)k^e + (1+r)w_{\hat{\tau}} > & f(k^e) + (1+r)[f(k_{\hat{\tau}-1}) - k^e] \\ \Rightarrow & (1+r)[f(k_{\hat{\tau}-1}) - (1+r)k_{\hat{\tau}-1}] + (1+r)^2 w_{\hat{\tau}-1} > (1+r)f(k_{\hat{\tau}-1}) \\ \Rightarrow & \delta^{\hat{\tau}} \left[(1+r)k_{\hat{\tau}-1} - (1+r)w_{\hat{\tau}-1} \right] < 0 \quad \text{which contradicts the definition of } \hat{\tau}. \end{split}$$

²⁸Observe, these inequalities ensure that if the borrower defaults at $\hat{\tau}$, then she graduates no later than the period at which she would have graduated if she had repaid always. Now, if she graduates at an earlier date in case of default, then obviously her utility from default is strictly higher than that from repayment. But also, when she graduates at the same period, she graduates with a higher amount of wealth in case of default. Hence, her utility from default is strictly higher than that from repayment, even in this case.

Hence, $\underline{\tau} > \hat{\tau} + 1$.

Step 5. Now, we show the contradiction for $\underline{\tau} > \hat{\tau} + 1$.

(i) If $f(k_{\tau-2}^A(\hat{\tau})) \leq k^e$, from the definition of $\underline{\tau}$ and $\hat{\tau}$ we have

$$\begin{split} f(k_{\underline{\tau}-1}) - (1+r)k_{\underline{\tau}-1} + (1+r)w_{\underline{\tau}-1} > & f(k_{\underline{\tau}-1}^A)(\tau) + (1+r)s_{\underline{\tau}-1}^A(\tau) \\ &= & f\Big(f(k_{\underline{\tau}-2}^A(\tau))\Big) \\ &> & f\Big(f(k_{\underline{\tau}-2}) - (1+r)k_{\underline{\tau}-2} + (1+r)w_{\underline{\tau}-2}\Big) \\ &= & f(w_{\underline{\tau}-1}) \\ &\Rightarrow & f(k_{\underline{\tau}-1}) - (1+r)k_{\underline{\tau}-1} > & f(w_{\underline{\tau}-1}) - (1+r)w_{\underline{\tau}-1} \\ &\Rightarrow & k_{\underline{\tau}-1} > & w_{\underline{\tau}-1}. \end{split}$$

where the first and second inequalities are coming from the definition of $\underline{\tau}$, the first equality is coming from the optimum decision under autarky, the second equality is coming from the definition of $w_{\underline{\tau}-1}$, and the final inequality is coming from the definition of k^e , and the fact that $w_{\underline{\tau}-1} < k^e$ which we show below:

$$w_{\underline{\tau}-1} = f(k_{\underline{\tau}-2}) - (1+r)k_{\underline{\tau}-2} + (1+r)w_{\underline{\tau}-2} < f(k_{\underline{\tau}-2}^A) + (1+r)w_{\underline{\tau}-2}^A = f(k_{\underline{\tau}-2}^A) \leq k^{e}$$

where the first equality is the definition of $w_{\underline{\tau}-1}$, and the second inequality is coming from the definition of $\underline{\tau}$.

So, we find a contradiction as $\underline{\tau} > \hat{\tau}$ and $\hat{\tau}$ is the maximum t at which $k_{t-1} > s_{t-1}$.

(ii) If $f(k_{\underline{\tau}-2}^A(\tau)) > k^e$, from the definition of $\underline{\tau}$, $\hat{\tau}$, and the optimum decision of the borrower at $\underline{\tau} - 1$ when she operates on her own after defaulting at $\hat{\tau}$, we have

$$\begin{split} f(k_{\underline{\tau}-1}) - (1+r)k_{\underline{\tau}-1} + (1+r)w_{\underline{\tau}-1} > & f(k_{\underline{\tau}-1}^A(\tau)) + (1+r)s_{\underline{\tau}-1}^A(\tau) \\ & = & f(k^e) + (1+r)[f(k_{\underline{\tau}-2}^A(\tau)) + (1+r)s_{\underline{\tau}-2}^A(\tau) - k^e] \\ \text{and} \quad f(k_{\underline{\tau}-2}^A(\tau)) + (1+r)s_{\underline{\tau}-2}^A(\tau) > & f(k_{\underline{\tau}-2}) - (1+r)k_{\underline{\tau}-2} + (1+r)w_{\underline{\tau}-2} \\ \Rightarrow \quad f(k_{\underline{\tau}-1}) - (1+r)k_{\underline{\tau}-1} + (1+r)w_{\underline{\tau}-1} > & f(k^e) - (1+r)k^e + (1+r)[f(k_{\underline{\tau}-2}) - (1+r)k_{\underline{\tau}-2} + (1+r)w_{\underline{\tau}-2}] \\ & = & f(k^e) - (1+r)k^e + (1+r)w_{\underline{\tau}-1} \\ f(k_{\underline{\tau}-1}) - (1+r)k_{\underline{\tau}-1} > & f(k^e) - (1+r)k^e \end{split}$$

which is not possible from the definition of k^e .

Appendix B

In this Appendix we provide some evidence that support various modelling assumptions made in the paper. We prepare this Appendix using the Global Outreach and Financial Performance Benchmark Report 2015 (MIX (2017)), data from MIX website, data from the websites of different MFIs, quotes from different books, journal articles etc.

- A. <u>Outreach.</u> "In FY 2015, 1033 institutions reported an outreach of 116.6 million borrowers who have access to credit products, corresponding to a gross loan portfolio of USD 92.4 billion... and 98.4 million depositors and account for USD 58.9 billion of deposits". In Table 1 we provide some more details. Source: MIX (2017).
- B. Near Perfect Repayment Rate in Microfinance. Table 2 shows that repayment rates are very high. *Portfolio at Risk (PAR)* is one of the indicators of repayment rate. Low PAR indicates high repayment rate. *Source:* MIX (2017).
- C. Progressive Lending with a Cap. Almost all the MFIs practise progressive lending. Many of those MFIs set caps as well loan size cannot increase beyond that. Here we provide some examples from India, Bangladesh and Vietnam top three MFIs by number of active borrowers. Table 3 shows that all the top five MFIs (by number of active borrowers) of India practise "progressive lending with a cap". Table 4 shows that all the top five MFIs (by number of active borrowers) of Bangladeh practise "progressive lending with a cap". Vietnam is the third largest country by active borrowers and Vietnam Bank of Social Policies is the largest MFI. In their website it is not mentioned whether they practise progressive lending or not, but each of the products offered by them has a cap. Table 5 documents that.
- **D.** Savings. We then discuss deposit collection in various parts of the World.

South Asia. Due to regulation, deposit collection in India is low. In fact, Kline and Sadhu (2015) point out "No microfinance institution registered as an NBFC, currently accepts deposits because regulation requires that institutions must obtain an investment grade rating, which no microfinance institution has obtained." In table 6 we document the savings products offered by SEWA Bank, the largest Indian MFI (by number of depositors). ²⁹ In table 7 savings products offered by the top five MFIs in Bangladesh are documented.

LAC is covered in table 8. Colombia, Peru and Bolivia are top three countries by number of depositors in Latin America and Carribean (LAC).

EAP, Africa and ECA are covered in table 9. Philippines, Indonesia and Vietnam are top three countries by the number of depositors in East Asia and the Pacific (EAP). Nigeria and Mongolia are top countries by the number of depositors in Africa and Eastern Europe and Central Asia (ECA) respectively.

²⁹We do not consider Bandhan here, as it has become a bank now and in the website it is not mentioned which savings products are for poor people.

A. Global Outreach

Table 1: Global Outreach: Borrower-Depositor Source MIX (2017)

				_		
	Number of	Percentage of	Number of	Percentage of	Deposits	Percentage of
Regions	Active Borrowers	Total Borrowers	Depositors	Number of	USD	Total
	′000		′000	Depositors	m	Deposits
Africa	5,778.2	5%	17,928.0	18%	9,212.1	16%
EAP	$16,\!257.5$	14%	16,117.9	16%	7,687.2	13%
ECA	3,082.6	3%	5,091.0	5%	7,664.3	13%
LAC	22,495.3	19%	23,708.6	24%	27,293.1	46%
MENA	2,148.4	2%	465.1	0%	251.0	0%
South Asia	66,929.3	57%	35,109.2	36%	6,885.8	12%
Grand Total	116,691.3	100%	98,419.8	100%	58,993.6	100%

B. Near Perfect Repayment Rate in Microfinance – Evidence

Table 2: Near Perfect Repayment Rate in Microfinance – Evidence

	Percentage of	Percentage of	Portfolio
Regions	Total Borrowers	Gross Loan Portfolio	at Risk> 30 Days
		$(GLP)^{\dagger}$	$(\mathrm{PAR})^{\ddagger}$
Africa	5%	9%	$\boldsymbol{10.60\%}$
East Asia and the Pacific (EAP)	1%	16%	3.40 %
Eastern Europe and Central Asia (ECA)	3%	11%	10.00 %
Latin America and the Carribean (LAC)	19%	42%	5.40 %
Middle East and North Africa (MENA)	2%	1%	$\boldsymbol{3.60}\%$
South Asia	57%	20%	2.60 %

^{† &}quot;Gross Loan Portfolio (GLP)": All outstanding principals due for all outstanding client loans. This includes current, delinquent, and renegotiated loans, but not loans that have been written off.

[‡] "Portfolio at Risk (PAR)": is one of the indicators of repayment rate. PAR [xx] days is defined as the value of all loans outstanding that have one or more installments of principal past due more than [xx] days.

Source: MIX (2017): Global Outreach and Financial Performance Benchmark Report 2015.

C. Progressive Lending with a Cap – Evidence

Table 3: India – The Largest Country by Number of Active Borrowers

	No. of Active	of Active Gross Loan Description				
MFI	Borrowers '000	Portfolio (GLP) m	Product Name	Progressive Lending?	Maximum Loan Amount INR	Reference/url (accessed on 31st October, 2019)*
			Suchana	Yes	25,000	http://www.houdhouhouh
Bandhan	_	2,596.22	Srishti	Yes	1,50,000	https://www.bandhanbank. com/Microloans.aspx
Jana Small Finance			Small Batch Loans	Yes	50,000	http://www.janalakshmi.c om/products-services/loa
(Formerly known as Janalakshmi)	5,888.75	1,974.73	Jana Kisan Loan	Yes	1,00,000	ns-for-individuals *(Accessed in January, 2018 before it became a Bank.)
Bharat Financial			Income Generation Loans (IGL) – Aarambh	Yes	29,565	
Inclusion Limited (Formerly known as	F 000 00	1 410 00	Mid-Term Loans (MTL) – Vriddhi	Yes	15,010	http://www.bfil.co.in/our-products/
SKS Microfinance Limited)	5,323.06	1,413.30	Long Term Loans (LTL)	Yes	49,785	1-products/
Share	3,740.00	251.68	General Loans	Yes	60,000	http://www.sharemicrofin
	-,		Micro Enterprise Loans	Yes	2,50,000	.com/products.html
Shree Kshethra Dharmasthala Rural Devt. Project (SKDRDP)	3,013.18	986.55	Pragathi Nidhi Programme	Yes	50,000 (collateralized thereafter)	Rao (2005) and https://skdrdpindia.org/ programmes/microfinance/

India: No. of active borrowers 43,153,000 and gross loan portfolio 14,901m. Top 5 MFIs from India by the no. of active borrowers, except Bandhan as number of active borrowers is not available in MIX Market data, however it is well known that this is the largest MFI in India (Gross Loan Portfolio is the maximum). Source MIX (2017).

Table 4: Bangladesh – The Second Largest Country by Number of Active Borrowers

	No. of Active	Gross Loan	Description				
MFI	MFI Borrowers Portfolio (GLP) m		Product Name	Progressive Lending?	Maximum Loan Amount	Reference/url (accessed on 31st October, 2019)	
Grameen	7,290.00	1,498.47	Basic Loan	Yes	No (but an individual gets a loan as long as she is below poverty line)	http://www.grameen.com/w p-content/uploads/bsk-pd f-manager/GB-2015_33.pdf https://grameenfoundatio n.org/sites/default/file s/books/GrameenGuideline s.pdf	
ASA	6,794.85	1,919.02	Primary Loan Special Loan	Yes Constant at the max. when the economic potential is large. Otherwise increasing.	BDT 99,000	http://www.asa.org.bd/Fi nancialProgram/LoanProdu cts	
			1	Ü	, ,		
DDAG	F 0F 0 F 0	5,356.52 1,768.61	Microloans (DABI)	Yes	USD 2,500	http://www.brac.net/imag	
BRAC	5,356.52		Small enterprise loans (PROGOTI)	Yes	USD 13,000	es/factsheet/MF_Briefing _Doc_English.pdf	
			Agriculture Loan	Yes	USD 1,500		
BURO Microfinance	996.22	406.58	Micro-Enterprise Loan	Yes	BDT 300,000	https://www.burobd.org/m icrofinance-loan-product	
Program			Agriculture Loan	Yes	BDT 50,000	.php?id=11	
Thengamara			Loan for Enterprise Advancement and Development (LEAD)	Yes	BDT 10,00,000	http://tmss-bd.org/loan- for-enterprise-advanceme nt-and-development-lead	
Mohila Sabuj Sangha (TMSS)	739.80 231.92		Rural Micro Credit (Jagaron) Ultra Poor Program (Buniad) Micro Enterprise SME Program (Agroshar)	Not Mentioned		http://tmss-bd.org/annua l-report-2016	

Bangladesh: No. of active borrowers 25,671,000 and gross loan portfolio 7,206m. Top 5 MFIs from Bangladesh by the no. of active borrowers. Source MIX (2017).

Table 5: Vietnam – The Third Largest Country by Number of Active Borrowers

Vietnam Bank of Social Policies (VBSP)						
Product Name	Maximum	Progressive	Reference/url			
1 Toddot Ttullio	Loan Amount	Lending?	(accessed on 31st October, 2019)			
Poor Households Lending	VND 30 million/household		http://eng.vbsp.org.vn/p oor-households-lending.h tml			
Job	Enterprises: VND 500,000,000/project.		http://eng.vbsp.org.vn/j			
Creation	Households: VND 20,000,000/household		ob-creation.html			
Overseas Workers	VND 30,000,000/labor		http://eng.vbsp.org.vn/o verseas-workers-lending. html			
Business& Production Households in Disadvantaged Areas	Generally VND 30 million. In some specific cases, loan amount can be over VND 30,000,000 to under VND 100,000,000	Not Mentioned	http://eng.vbsp.org.vn/b usiness-production-house holds-in-disadvantaged-a reas.html			
Small and Medium Enterprises	VND 500,000,000/enterprise		http://eng.vbsp.org.vn/s mall-and-medium-enterpri ses.html			
Extremely Disadvantaged Ethnic Minority Households	VND 5,000,000		http://eng.vbsp.org.vn/e xtremely-disadvantaged-e thnic-minority-household s.html			

Vietnam: No. of active borrowers 7,394,000 and gross loan portfolio 7,937m. VBSP is the largest MFI by the no. of active borrowers: No. of active borrowers 6,784740 and gross loan portfolio 6,911.69m. VBSP is the largest single microcredit lender in the world (Haughton and Khandker (2016)).

Source: MIX (2017).

D. Savings

Demand for Savings Service among Poor People and Lack of that

- "The commitment savings account gives you the chance to make a really long-term high-value swap, suitable for family ambitions like education, marriages and jobs for the youngsters, land and housing, and more distant anxieties like how to survive after you are too old and weak to work." (Rutherford (2009))).
- "Poor people save even at negative interest rate" (for example with Jyothi in India (Rutherford (2009))), and with the Susu men in Africa (Besley (1995)).

Deposit Collecting MFIs

- "...(M)any MFIs have become true microbanks, doing both credit and voluntary savings. Their savings accounts take various forms. Some are completely liquid, allowing deposits and withdrawals of any amount at any amount, or nearly. Others are time deposits, like certificates of deposit, which are locked up for agreed periods and pay higher interest in return. In between there are semi-liquid accounts.... which limit the number, amount, or both of transactions per month through rules of penalties." (Roodman (2009) p 261.)
- "...Some forced savings are taken directly out of the loan amount before disbursal; as of 2003, for example, the Bolivian village banking MFI Crédito con Educacíon Rural withheld

10-20 percent of a loan upfront. In contrast, FINCA Nicaragua took forced savings equal to 32 percent of the loan amount incrementally, like loan payments, at successive group meetings. Some MFIs allow clients to withdraw forced savings when they are done paying off the associated loan, others not until the client leaves the program altogether.

This counterintuitive combination of saving and borrowing accelerates loan repayment so that toward the end of a loan cycle, the MFI is actually in debt to its clients...." (Roodman (2009) p 124.)

- Village Banking Institutions "typically require each village bank member to save. These forced savings are often a significant percentage of the amount the member has borrowed from the VBI. For example, forced savings range from 10 to 32 percent of the amount borrowed in the four leading Latin American VBIs analyzed in this study. Forced savings serve at least two major purposes. First, they act as cash collateral... The second purpose of forcing village bank members to save is to introduce them to the discipline and habit of saving and to the possibilities that having a sizable savings balance could open up for them. For example, a sizable pool of savings could be used for emergencies, to pay school fees and other large household expenditures, to buy tools or machinery, or to start another business" (Westley (2004)).
- "Thus, in effect, the funds serve as a form of partial collateral." (Morduch (1999)).
- "(C)ollateralizing mandatory savings could offer a win-win solution for both lender and borrower by providing the MFP" (Microfinance Providers) "with security while at the same time building the asset base of the client." (Aslam and Azmat (2012)).

Table 6: South Asia: India – Savings Services provided by the Top MFI (by no. of depositors)

MFI No. of Depositors Deposits (USD m)	Product	Terms	Reference/url (accessed on 31st October, 2019)
		Regular Savings Product	https://www.sewabank .com/saving.html
		Fixed Deposit	https://www.sewabank.com/fixed-deposit.html
Shri Mahila Sewa	Chinta Nivaran Yo- jana (Worry Riddance Scheme)	Deposits are made every month up to Five Years. In any emergency, after one year of joining in the scheme they can get an overdraft loan.	
Sahakari Bank Ltd. 2,00,660 14.08	Kishori Gold Yojana	To encourage member to save money for special occasion. This was aimed at meeting expenses towards buying gold and gold ornaments during the wedding of their progeny.	https://www.sewabank
	Mangal Prasang Yojana	Help members during wedding of their sons and daughters.	.com/recurring.html
	Ghar Fund Yojana (Housing Fund Scheme)	To enable the member to have a house of their own. Maturity after 5/10 years	
		National Pension Scheme	https://www.sewabank .com/pension.html

India: No. of active depositors 374,000 and total deposit USD 329.65m. (We have not considered Bandhan here, as it has become a Bank now and in the website it is not mentioned which savings products are for the poor people.) *Source:* MIX (2017).

Table 7: South Asia: Bangladesh – Savings Services provided by the Top Five MFIs

MFI	Product	Terms	Reference/url (accessed on 31st October, 2019)
Grameen	Personal Savings	Weekly compulsory savings. Withdrawal at any time is allowed.	Alam and Getubig (n.d.),
Deposits (USD m) 2,604.93	Grameen Pension Scheme (GPS)	For five to ten years. Higher interest rate. Not restricted to retirement needs: Many younger families see the program as a means to save for medium-term expenses, such as school fees or weddings in the future for recently born children.	Rutherford (2010)
ASA	Regular Savings: Clients belonging to Loan Programs need to deposit a regular fixed amount.	Min. savings: Tk. 10 per week and Tk. 50 per month for primary loan; Tk. 50 per week and Tk. 100 per month for special loan. Members may withdraw from their savings any time maintaining a balance of at least 10% of their loan outstanding.	
No. of Depositors 7,843960 Deposits (USD m) 826.34	Voluntary Savings: Excess of Mandatory/Regular savings is treated as voluntary savings.	May deposit any amount above their mandatory weekly savings. Members may withdraw from their savings anytime maintaining a balance of at least 10% of their loan outstanding.	http://www.asa.org.bd/Fi nancialProgram/SavingsPr oducts
	Long Term Savings: Any client can participate in this product.	Members deposit from Tk. 50 to Tk. 1000. Members can withdraw from their savings anytime at an interest rate calculated on monthly basis. For withdrawal before maturity she is given lower rate of return.	
	Capital Buildup Savings Fund	Weekly premium is BDT 10 or monthly premium BDT 50. The duration of CBSF is 400 weeks. For withdrawal before its maturity the borrower is given interest benefit on deposited amount at a special rate. On death of a borrower his/her family is given twice the deposited amount as security.	
BRAC		General Savings	
No. of Depositors 5,957950 Deposits (USD m) 635.14	Safesave	Longer-term "commitment savings" account. Deposit regularly for a defined term of up to ten years and receive higher rates of interest.	http://www.brac.net/prog ram/microfinance/
BURO Bangladesh	General Savings	The general savings account is like a current account, where customers can save or withdraw on demand.	https://www.burobd.org/m icrofinance-savings-prod
No. of Depositors 1,449090 Deposits (USD m) 128.14	Contractual Savings	A way of building up useful lump sums: This savings can be invested or used for social obligations such as marriages, funeral or children's education. Higher interest than general savings. In the contractual savings account clients agree to regularly deposit a set amount for a set period of time after which they can withdraw the entire amount plus the interest.	uct.php?id=12
TMSS No. of Depositors 879600 Deposits (USD m) 73.10		General Savings, Special Savings, Monthly Savings	http://tmss-bd.org/annua l-report-2016

Bangladesh: No. of active depositors 24,353,000 and total deposit USD 4,884m. Source: MIX (2017).

Table 8: Evidence for Savings in Latin America and the Caribbean (LAC)

Country No. of Depositors Deposits (USD m)	MFI No. of Depositors Deposits (USD m)	Product	Terms	Reference/url (accessed on 31st October, 2019)
Colombia 7,274,000 4,598	Banco Caja Social 4,655,300 3,352.44	Data not found	-	-
Peru 5,835,000 9,476	MiBanco 631,770 4,655.30	MiBanco (has) moved strongly into savings		Roodman (2009)
Bolivia 3,992,000 6,741	BancoSol 847,660 1,114.13	Liquid Savings Product: Cuenta de Ahorro Semi-liquid Savings Product: Cuenta de Mayor Cuenta de Mayor Fixed Term Deposit: Deposito A Plazo Fizo Sol Seguro: "(N)icely combines the virtues of insurance with an incentive to save." Some other products include Savings for children: Solecito (0-12 years) and SolGeneracion(13-17 years)		https://translate.google .com/translate?hl=en&sl= es&tl=en&u=https%3A%2F%2 Fwww.bancosol.com.bo%2Fa horros

Table 9: Evidence for Savings contd.

Region	Country No. of Depositors Deposits (USD m)	MFI No. of Depositors Deposits (USD m)	Product	Terms	Reference/url (accessed on 31st October, 2019)	
	Philippines	ASA Philippines	Capital Build-Up (CBU)	CBU is an alternative micro savings service for clients designed to promote the idea of poor families saving for the future in order to meet family emergencies and other needs. Withdrawable at any time.	http://asaphil.org/about /who-we-are/primary-serv ices.aspx	
East Asia and The	7,244,000 734	1,532,700 135.40	Locked-in Capital Build Up (LCBU)	LCBU is fixed and mandatory, and serves as a monitoring tool of a client's performance and a basis for determining a client's loan renewal and any increase in loan amount. Non-withdrawable although it is 100% refundable.		
Pacific (EAP)	Indonesia 782000 29	Bank of Rakyat Indonesia (BRI) Unit Desa	"The global goliath of microsavings, BRI, offers all three" (liquid savings, locked-up savings and in between).		Roodman (2009)	
	Vietnam 556000 3.404	Vietnam Bank of Social Policies (VBSP) 2.463.85	Savings Deposit through savings and credit group (SCG) (An individual gets a loan from VBSP only if she is a member of SCG and saves) Demand savings deposit		http://eng.vbsp.org.vn/t erms-savings-deposits.ht ml http://eng.vbsp.org.vn/d emand-savings-deposits.h	
	3,404	2,403.85	Term savings deposit		tml	
Africa	Nigeria 4,240,000 184	Life Above Poverty Organization (LAPO) Microfinance Bank 2,631,980 90.97	Offers different savings product including – Regular Savings, Savings Plan Account, Term Deposit Savings, Voluntary Savings, Individual Savings, Festival Savings, My Pikin Savings		Roodman (2009) and http://product.lapo-nige ria.org/	
Eastern Europe and Central Asia (ECA)	Mongolia 2,987,000 2,404	Khan Bank 2,397,570 2,001.23	Data not found	-	-	

References

- Alam, N. Nurul and Mike Getubig, "Guidelines for Establishing and Operating Grameen-Style Microcredit Programs," https://grameenfoundation.org/sites/default/files/books/GrameenGuidelines.pdf (Date of access 8th May 2018). 33
- Aslam, Amal and Neelam Azmat, A Study of Collateral Options for Microfinance Loans in Pakistan, Pakistan Microfinance Network, 2012. 2, 32
- Baland, Jean-Marie, Catherine Guirkinger, and Charlotte Mali, "Pretending to Be Poor: Borrowing to Escape Forced Solidarity in Cameron," *Economic Development and Cultural Change*, 2011, 60 (1), 1–16.
- Banerjee, Abhijit, Emily Breza, Esther Duflo, and Cynthia Kinnan, "Can microfinance unlock a poverty trap for some entrepreneurs?," Technical Report, National Bureau of Economic Research 2019. 2, 3
- Banerjee, Abhijit V., Dean Karlan, and Jonathan Zinman, "Six Randomized Evaluations of Microcredit: Introduction and Further Steps," American Economic Journal: Applied Economics, 2015, 7 (1), 1–21. 3
- Basu, Karna, "A behavioral model of simultaneous borrowing and saving," Oxford Economic Papers, 2016, 68 (4), 1166–1174. 3
- Besley, Timothy J., "Savings, Credit, and Insurance," in T. N. Srinivasan and Jere Behrman, eds., Handbook of Development Economics, Vol. 3A, Amsterdam: Elsevier, 1995, chapter 36, pp. 2123–2207. 31
- Bulow, Jeremy I. and Kenneth Rogoff, "Sovereign Debt: Is to Forgive to Forget?," American Economic Review, 1989, 79 (1), 43–50. 1, 3, 5, 14
- Dasgupta, Dyotona, Prabal Roy Chowdhury et al., "Simultaneous Borrowing and Saving in Microfinance," Technical Report 2020.
- de Aghion Beatriz Armendàriz and Jonathan Morduch, "Microfinance Beyond Group Lending," *The Economics of Transition*, 2000, 8 (2), 401–420. 4
- **_ and _** , The Economics of Microfinance, Cambridge MA: MIT Press, 2005. 17
- Egli, Dominik, "Progressive Lending as an Enforcement Mechanism in Microfinance Programs," Review of Development Economics, 2004, 8 (4), 505–520. 4
- Field, Erica and Rohini Pande, "Repayment frequency and default in microfinance: evidence from India," Journal of the European Economic Association, 2008, 6 (2-3), 501–509. 14
- Ghosh, Parikshit and Debraj Ray, "Information and Enforcement in Informal Credit Markets," Economica, 2016, 83 (329), 59–90. 4
- Haughton, Jonathon and Shahidur R. Khandker, "Microcredit in Viet Nam Does It Matter?," IFPRI Discussion Paper, 2016, 01569. 31
- Karlan, Dean, Aishwarya L. Ratan, and Jonathan Zinman, "Savings by and for the Poor: A Research Review and Agenda," *The Review of Income and Wealth*, 2014, 60 (1), 36–78. 17
- Kline, Kenny and Santadarshan Sadhu, "Microfinance in India: A New Regulatory Structure," Available at www.ifmrlead.org/wp-content/uploads/2015/0WC/IIMRegulationV11.pdf (Date of access 29th May 2018) 2015. 27
- Laibson, David, Andrea Repetto, and JEeremy Tobacman, "A Debt Puzzle," Knowledge, Information, and Expectations in Modern Macroeconomics: In Honor of Edmund S. Phelps, 2003, p. 228.

- MIX, "Global Outreach and Financial Performance Benchmark Report 2015," Available at https://www.themix.org/sites/default/files/publications/global_benchmark_report_fy2015_0.pdf (Date of access 29th May 2018) 2017. 27, 28, 29, 30, 31, 32, 33
- Morduch, Jonathan, "The microfinance promise," Journal of Economic Literature, 1999, 37 (4), 1569–1614. 32
- Rao, Mamatha H., "Practises of Shree Kshethra Dharmasthala Rural Development Project," Technical Report, Microfinance Gateway 2005. 29
- Rhyne, Elisabeth, "On Microfinance: Who's to Blame for the Crisis in Andhra Pradesh?," Available at https://www.huffingtonpost.com/elisabeth-rhyne/on-microfinance-whos-to-b_b_777911.html (Date of access 7th May 2018) November 2, 2010. 17
- Roodman, David, Due Diligence: An Impertinent Inquiry into Microfinance, Center for Global Development, 2009. 17, 31, 32, 34, 35
- Rosenthal, Robert W., "On the incentives associated with sovereign debt," *Journal of International Economics*, 1991, 30, 167–176. 1, 3, 5, 14
- Rutherford, Stuart, The Poor and Their Money: Microfinance from a Twenty-first Century Consumer's Perspective, Practical Action Publishing, 2009. 31
- ____, "Grameen II and Portfolios of the Poor," 2010. 33
- **Shapiro, D. A.**, "Microfinance and Dynamic Incentives," *Journal of Development Economics*, 2015, 115, 73–84. 4
- Westley, Glenn D., "A Tale of Four Village Banking Programs: Best Practices in Latin America," *Inter-American Development Bank*, 2004. 32