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Abstract

We model the behavior of a decision maker who exercises self-control to address

an intrapersonal conflict between what she wants to do (her “want-self”) and what

she thinks she should do (her “should-self”). In any menu, her expression of self-

control involves, first, eliminating a subset of alternatives that are worst according

to her should-self which, if chosen, induces guilt. Then, amongst the remaining al-

ternatives, she chooses the best one according to her want-self. We characterize the

model behaviorally and determine the extent to which the preferences of the two selves

and the alternatives eliminated in any menu are uniquely identified. We compare and

contrast the model’s implications for “non-standard” choices with existing models of

self-control.
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1 Introduction

Consider the following two examples:1

Example 1: Experiments based on the dictator game have been widely conducted in labs

and fields to study allocation decisions in non-strategic settings. In the standard version of

this two player game, one of the players (the “dictator”) is made responsible for deciding

how a given endowment (of, say, money) is to be divided between the two of them. It has

been documented that on average, lab dictators give about 20% of the endowment to the

recipient (Camerer, 2011). Despite the widespread replication of altruistic behavior in this

standard setting, it has been found that giving is highly sensitive to minor tweaks made in

the design [Dana, Weber, and Kuang (2007), Hoffman et al.(1996), Franzen and Pointner

(2012), Cherry et al. (2002), Eckel and Grossman (1996)]. One such design variation is

in the set of options available to the dictator. A few papers [Bardsley (2008), List (2007)]

expand this set to allow for taking, i.e., the dictator not only has the option of sharing

the endowment between the recipient and herself in any way she wishes but may also now

take part of the recipient’s endowment. If our understanding is that giving in the standard

version of the game is due to an altruistic motivation, then this giving should remain

unaltered in the take version of the game as well. However, when taking is an option,

significantly fewer subjects make a positive transfer to the recipient. For instance, in List

(2007), in the control setting, both players were allocated $5, with dictators allocated

an additional $5 that they could divide with recipients in any way they chose (in $0.50

increments). In this setting, 71% of subjects made positive transfers to the recipients with

median and mean transfers being $1 and $1.33, respectively. On the other hand, in one

of the treatments in which besides the different options available to divide the $5 like in

the control, dictators could additionally take $1 from the recipient, only 35% of subjects

made positive transfers and median and mean transfers were $0 and $0.33, respectively.

Example 2: An individual who is on a diet walks into a subs and salad outlet for lunch

and has to decide whether to order a cola with her meal or avoid it. If she chooses to

order it, the only option available on the menu is a small (300 ml) serving of cola. In

this case, she decides to forego ordering the cola. In another instance, when she is in an

identical outlet for lunch, she is confronted with a similar decision. But, this time around,

the menu not only has the option of the small serving of cola but also a large (750 ml) one.

In this case, she ends up ordering the small serving of cola with her meal. Such patterns

of choice, highlighting what is referred to as the compromise effect, are quite common and

1Examples similar in spirit to these ones have been referenced prominently in the literature on temp-

tation and self-control, e.g., in Fudenberg and Levine (2006), Dekel, Lipman, and Rustichini (2009), Noor

and Takeoka (2015) and Masatlioglu, Nakajima, and Ozdenoren (2020).
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have been reported in the experimental literature going at least as far back as Simonson

(1989) and Simonson and Tversky (1992). Indeed, exploiting the compromise effect is one

of the most common strategies that marketers employ as a way of boosting sales.

Although the choices in these two examples may appear to be from different domains—

one pertaining to a distributional problem and the other from an individual consumption

setting—in this paper, we propose a choice procedure that sees them as products of a

unified behavioral framework, one in which a decision maker (DM) faces an intrapersonal

conflict and exercises self-control to address it. The intrapersonal conflict that we model

draws on the observation that an individual’s desires, motivations and objectives operate

at different levels. Whereas some of these are in the nature of primitive passions and

pleasures, quite often of an instinctual and even impulsive disposition, others are more

evolved needs that capture certain ideals or moral judgments. We may call the first, the

DM’s wants and the second, her shoulds. In many choice problems both wants and shoulds

factor in and an intrapersonal conflict may present itself. Of course, the DM can always

make choices based exclusively on what she wants to do, ignoring concerns about what she

should do. Choosing in this manner may allow her to avoid feelings of anxiety that result

when she does not get what she wants. However, doing so may also mean that she ends

up making choices she feels she should not and this may subject her to the uncomfortable

emotion of guilt. It is precisely to alleviate these feelings of guilt that the DM may value

exercising some self-control. The choice procedure that we introduce here speaks to this

and proposes one way in which the DM may go about exercising this self-control. The

procedure assumes that the DM is able to rank all the available alternatives under purview

according to both her want and should selves. The way she then chooses is the following.

Given any menu of alternatives, first, she eliminates a nonempty, strict subset of these

alternatives that are the worst according to the preferences of her should-self.2 These are

precisely the alternatives which she feels she should not choose in that menu and, if chosen,

would produce a significant sense of guilt in her. Then, amongst the remaining alternatives,

she chooses the one that is the best according to the preferences of her want-self. We refer

to this choice procedure as the self-control heuristic.

To understand the choice procedure better, consider Example 1 above. Here, what the

DM may want to do is act selfishly and pocket as much of the available endowment as

possible. On the other hand, her ideals and moral judgments may force her to acknowledge

that she should act more altruistically. Going back to the control setting in List (2007) in

which $5 can be shared, suppose that the two worst alternatives according to her should-

self that involve giving nothing and giving only 50 cents to the recipient, respectively, are

the ones that, if chosen, would make the DM feel particularly guilty. So, her expression

of self-control may involve eliminating these alternatives in this choice problem. Then,

amongst the remaining alternatives, she chooses the best one according to what she wants,

2That is, if there are n ≥ 2 alternatives in the menu, then in the first stage, the k worst alternatives

according to the preferences of the should-self are eliminated, where 0 < k < n.
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resulting in the choice of the allocation ($9, $6) and a transfer of $1. On the other hand,

in the treatment in which she can also take $1 from the recipient, given the change in

context introduced by the take option, eliminating just the worst alternative according to

her should-self that involves taking the $1 may be enough to assuage her feelings of guilt

associated with making choices she thinks she should not.3 This means that in this choice

problem, she chooses the allocation ($10, $5), which amongst the remaining alternatives,

is the best one according to her want-self. That is, she ends up making a zero transfer.

A similar reasoning explains choices in Example 2 pertaining to the compromise effect. In

it, given that the DM is on a diet, she knows that she should avoid sugarated drinks. At

the same time, owing to habit, she may naturally want to have a cola with her meal. In

the first choice problem, when the options are ordering a small serving of cola or no cola,

having the cola, even though it is a small one, may make her feel quite guilty. As such,

she may eliminate this alternative and end up ordering no cola. On the other hand, when

the large serving of cola is added to the menu, she may be able to mitigate her sense of

guilt by eliminating only this alternative from the menu. This leaves her with the option

of ordering either the small serving of cola or no cola and according to the preferences of

her want-self, she chooses the former.

In this paper, we formalize the self-control heuristic (SCH) in the tradition of behavioral

choice theory (BCT) models that employ two-stage, sequential choice procedures [e.g.,

Manzini and Mariotti (2007), Cherepanov, Feddersen, and Sandroni (2013), Masatlioglu,

Nakajima, and Ozbay (2012), amongst others]. Our key analytical result is the behavioral

characterization of this procedure and some variants of it. That is, we provide testable

conditions on behavior (choice data) that an outside observer can use to determine whether

choices of a DM agree with the SCH. We also determine to what extent the parameters of

the model, specifically, the two rankings reflecting the DM’s want and should selves and

the set of alternatives eliminated in the first stage in any choice problem as an expression

of self-control, can be uniquely elicited from choice data. Along with the rankings, the

identification of the set of eliminated alternatives is meaningful as it allows the analyst

to gather information about important psychological drivers of behavior. For instance, in

recent years, the strength model of self-control (Baumeister, Schmeichel, and Vohs, 2007)

has made the case that acts of effortful self-control draw on a limited energy resource and

this resource gets depleted from repeated exertions, akin to how an overused muscle loses

strength, making subsequent efforts at self-control harder—a phenomenon that has been

referred to as ego depletion. The analyst may be able to get a sense of the level of ego

depletion that the DM experienced at the time of choosing from the identification of the

3In other words, in the presence of the take option, the alternatives of giving nothing or giving 50 cents

do not induce the same feelings of guilt as in the previous menu and, accordingly, do not get eliminated.

That is, whether an alternative makes the DM feel guilty enough so as to psychologically compel her to

eliminate it from consideration may be menu dependent. This is a key aspect of our theory that we will

address in more detail shortly.
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eliminated sets—e.g., a smaller set of eliminated alternatives may indicate higher levels of

ego depletion.4 Overall, this exercise allows us to connect the theme of self-control to the

BCT literature and explore its behavioral foundations in the light of this literature. That

is, we explore the question of what the implications of exercising self-control are in the

domain of “non-standard” choices that the BCT literature has endeavored to study.

An impressive literature in economics has developed over the last few decades studying

the theme of self-control. Therefore, the first question that the reader would probably

want us to address is about how our paper adds to this literature and in what ways does

it relate to the insights that this literature has developed. This is where we turn to next.

We hope to convince the reader that our paper both relates to this literature as well as has

additional insights to offer when it comes to the question of understanding the implications

of exercising self-control for non-standard behavioral choices.

2 The literature on self-control

There is a long tradition in economics of studying decision problems that feature an intrap-

ersonal conflict going at least as far back as Strotz (1955). Strotz and some of the other

early papers in this area like Peleg and Yaari (1973) and Blackorby et al. (1973) analyzed

such problems from the paradigm of changing tastes. The perspective on intrapersonal

conflict that we take in this paper of a DM operating under the influence of two sets of

conflicting preferences at the same instance can be traced back in the economics literature

to Thaler and Shefrin (1981) and Schelling (1984). Within this perspective of intraper-

sonal conflict, our work relates most to those models in which the DM is able to exercise

self-control at the time of making choices, very often by exercising costly willpower. In re-

cent years, a major fillip to this line of enquiry has been provided by the pioneering model

of temptation and self-control introduced in Gul and Pesendorfer (2001) [GP henceforth]

and subsequent work that have build on this model. Given that this body of work forms

the immediate point of reference for our paper, we will now engage with it in some detail

with the goal of comparing and contrasting our approach to it.

Building on the framework of Kreps (1979), GP model a two-stage decision problem con-

fronting a DM who faces temptation while choosing from a menu but is also sophisticated

to recognize this at an ex ante stage while choosing between menus to face at the second

stage. Our model connects to the second stage of the GP decision problem, where like in

4In general, more ego depleted a DM is, the less salient are her emotions of guilt compared to anxiety.

Since the reason the DM eliminates alternatives that she feels she should not choose in a menu is to mitigate

feelings of guilt, the less salient are such feelings the smaller the set of eliminated alternatives and lower

the level of self control exercised. This observation checks out in experiments. For instance, in the context

of a dictator game experiment, Xu, Bègue, and Bushman (2012) show that greater ego depletion decreases

guilty feelings and produces more selfish behavior.

5



our set-up, the DM is able to exercise self-control. Specifically, their model conceives two

utility functions over the set of alternatives, u and v, representing the DM’s commitment

and temptation perspectives, respectively, such that choice in the second stage from a

menu is specified by:5

c(S) = argmax
x∈S

{

u(x)−
[

max
y∈S

v(y)− v(x)
]

}

= argmax
x∈S

{

u(x) + v(x)
}

In other words, the value to the DM of choosing an alternative x from the menu S is

given by the commitment utility, u(x), adjusted for the cost of exercising self-control,

maxy∈S v(y) − v(x), involved in choosing x from a menu whose most tempting alterna-

tive has a temptation level of maxy∈S v(y). Observe that the GP formulation implies,

unlike in our set-up, that choices from menus satisfy the weak axiom of revealed pref-

erences (WARP), which is the benchmark for the standard rational choice approach in

economics that models a DM’s behavior as resulting from the maximization of a single

preference relation.6 This difference between our paper and the GP framework has been

narrowed by subsequent innovations introduced to this framework, specifically by Noor

and Takeoka (2010) and Fudenberg and Levine (2006, 2011, 2012),7 who allow self-control

costs to be convex instead of linear; Noor and Takeoka (2015), who models menu depen-

dent self-control costs; and Liang, Grant, and Hsieh (2019) and Masatlioglu, Nakajima,

and Ozdenoren (2020), who introduce the ego depletion or limited willpower perspective.

In all these papers, choices from menus can violate WARP. For instance, like us, all of these

models can accommodate the compromise effect. We now discuss some of these papers

to be in a position to compare our model to this framework, especially when it comes to

accommodating non-standard behavioral choices.8

In Noor and Takeoka (2010), the cost of exerting self-control is convex implying that the

marginal cost of exerting self-control is increasing. In terms of the functions u and v

representing the DM’s commitment and temptation rankings, respectively, choice in any

menu S is determined by:

c(S) = argmax
x∈S

{

u(x)− ϕ
(

max
y∈S

v(y)− v(x)
)

}

,

5In the GP framework, alternatives in a menu are lotteries.
6It should be noted that when we talk about WARP in the GP framework we do so with respect to a

choice correspondence, whereas in our set-up the reference is to a choice function.
7Fudenberg and Levine model the interactions between a long-run self and a sequence of myopic short-

run selves. The short-run self makes choices but the long-run self can influence these choices at a cost, an

interaction which can equivalently be viewed in the light of the GP representation with either a linear or

convex cost of self-control.
8It is worth pointing out that these models do have some differences when it comes to their primitives.

Noor and Takeoka (2010) and Liang, Grant, and Hsieh (2019) consider only preference over menus as

their primitive so that choices from menus is not directly modelled behaviorally but rather implied by the

representation of preferences over menus (under the assumption that the DM is sophisticated). Noor and

Takeoka (2015) additionally model choices from menus explicitly in terms of its behavioral foundations.

The same is the case with Masatlioglu, Nakajima, and Ozdenoren (2020) where the behavioral focus is

most prominently on choices from menus.
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where ϕ is a convex function.9 Noor and Takeoka (2015) introduce self-control costs which

are menu-dependent. Formally,

c(S) = argmax
x∈S

{

u(x)− ψ
(

max
y∈S

v(y)
)(

max
y∈S

v(y)− v(x)
)

}

= argmax
x∈S

{

u(x) + ψ
(

max
y∈S

v(y)
)

v(x)

}

,

where ψ(.) ≥ 0. That is, the function ψ(.) scales up or down the self-control cost associated

with a menu depending on the most tempting alternative available in it. Both Masatlioglu,

Nakajima, and Ozdenoren (2020) and Liang, Grant, and Hsieh (2019) model a DM who

has a limited stock of willpower which determines the extent of self-control she can exert

in a menu in terms of the alternatives that are psychologically feasible for her to choose.

In Masatlioglu, Nakajima, and Ozdenoren (2020), choice from a menu is determined by:

c(S) = argmax
x∈S

u(x) subject to max
y∈S

v(y) − v(x) ≤ w,

where w ≥ 0 measures the DM’s stock of will power.10 On the other hand, choices from

menus in Liang, Grant, and Hsieh (2019) are like in Gul and Pesendorfer (2001) but with

the willpower constraint. Specifically,

c(S) = argmax
x∈S

{u(x) + v(x)} subject to max
y∈S

v(y)− v(x) ≤ w

What is similar? We first highlight a key similarity between our approach and these

models. Observe that in all these models the most tempting alternative in a menu plays

a critical role in determining the degree of self-control that’s exercised in that menu.

This is because this alternative determines the cost of self-control involved in choosing

any alternative from that menu. Although the exact channels are different, in all the

four models above, this role that the most tempting alternative plays in determining self-

control costs is at the heart of menu effects and non-standard choice behavior. Specifically,

expanding a menu by adding more tempting alternatives to it can severely exacerbate self-

control problems by increasing the cost of exercising self-control and, in turn, produce

menu effects. This is an important point and is worth illustrating with an example. We do

so using Example 2 of the Introduction involving the three alternatives of no cola (x), small

cola (y) and large cola (z), and the convex self-control cost model of Noor and Takeoka

(2010). Say, u(x) = 13, u(y) = 7, u(z) = 2 and v(x) = 1, v(y) = 3, v(z) = 5. Further,

ϕ(r) = r2. Then in set S = {x, y},

u(x)−ϕ
(

max
w∈S

v(w)−v(x)
)

= 13−(3−1)2 = 9 > 7 = 7−(3−3)2 = u(y)−ϕ
(

max
w∈S

v(w)−v(y)
)

9Noor and Takeoka (2010) also discuss a more general version of this model in which the cost function

takes a general form, ϕ̃
(

v(x),maxy∈S v(y)
)

.
10Masatlioglu, Nakajima, and Ozdenoren (2020) also discuss a more general version of this model in

which the will power stock varies with the chosen alternative.
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Hence, c(S) = x. But, in T = S ∪ {z}, c(T ) = y as shown below:

u(y)− ϕ
(

max
w∈T

v(w) − v(y)
)

= 7− (5− 3)2 = 3 > 2 = u(z)− ϕ
(

max
w∈T

v(w) − v(z)
)

> −3 = 13− (5− 1)2 = u(x)− ϕ
(

max
w∈T

v(w) − v(x)
)

As should be evident, the reason for the menu effect seen in the choice reversal from x

to y when we expand the menu from S to T is because of the way the cost of exercising

self-control involved in choosing x from T , as compared to choosing it from S, increases

in a non-linear way with the addition of the alternative z.11

This effect which appears quite intuitive resonates with our model. In our SCH choice

procedure, we think of the worst alternative in a menu according to the DM’s should-self

as contextualizing the DM’s perception of what should not be chosen in that menu. This

is because the guilt associated with choosing any alternative in a menu is, presumably,

perceived by the DM with reference to this alternative. For example, for a DM on a diet,

if the worst alternative in a menu according to her should-self is a 600 calorie dessert

then consuming a 500 calorie dessert may seem pretty bad and induce significant guilt.

However, if the worst alternative in the menu is a 2000 calorie dessert, the 500 calorie

dessert may no longer appear that bad to her and may not induce the same feelings of

guilt. Likewise, in the dictator game if taking is not an option, then not sharing any part

of the endowment or sharing very little may make the DM feel quite guilty. However, if

taking is an option, then these alternatives may not be perceived with the same feelings

of guilt. Accordingly, given that the reason the DM eliminates alternatives in a menu is

to mitigate feelings of guilt, the worst alternative in the menu according to her should-self

by contextualizing the guilt associated with choosing different alternatives from that menu

plays a key role in determining the set of eliminated alternatives and, therefore, the scope

of self-control.

This feature of our model has an important implication for the relationship between elim-

inated sets when menus are expanded and, in turn, holds the key to menu effects. To

understand this, first, consider the case when a menu S is expanded to a menu T and

none of the new alternatives in T \ S are worse than the worst alternative in S according

to the DM’s should-self. In this case, if any alternative in S induces sufficient guilt in

the DM so as to get eliminated in this menu then the guilt perception about it does not

change in T as the worst alternative according to her should-self in S and T is the same.

This means that this alternative is also eliminated in T and, hence, the set of alternatives

eliminated in S is a subset of that in T in this case. However, consider the other case in

which at least one of the new alternatives in T \ S is worse according to her should-self

than the worst alternative in S. In this case, it is possible that her perception of guilt

11Similar menu effects induced by expanding a menu through the introduction of more tempting alter-

natives shows up in the aforementioned models of Noor and Takeoka (2015), Masatlioglu, Nakajima, and

Ozdenoren (2020) and Liang, Grant, and Hsieh (2019), as well.
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associated with choosing an alternative changes in T compared to that in S. That is, there

may exist alternatives which are eliminated in S that no longer induce similar feelings of

guilt in T and, accordingly, do not get eliminated. In other words, the set of alternatives

eliminated in S need not be a subset of that in T in this case. It is precisely the failure

of this inclusion relation to hold when a menu is expanded to include alternatives that are

worse according to the preferences of the should-self that is at the heart of menu effects in

our model, resembling the spirit of what drives menu effects in the aforementioned models.

This can be seen very clearly in the cola example from above. Since the alternative z, the

large cola, is worse according to the DM’s should-self than any of the alternatives in S, the

eliminated set in S, i.e., {y}, need not be a subset of the eliminated set in T . For instance,

the eliminated set in T can be the singleton {z}. This is the reason why a choice reversal

from x to y may occur in our model when the menu is expanded from S to T . Indeed,

this channel may result in large shifts in behavior when more tempting alternatives are

added to the menu just like in the aforementioned models. To see this consider a more

elaborate example in which a DM on a diet faces a menu consisting of the following dessert

options (calorie intake associated with each dessert is mentioned alongside): fruit yogurt -

90 calories (x), macaroons - 140 calories (y), apple pie - 240 calories (z), cheese cake - 500

calories (u), and Banoffee Nutella waffle - 850 calories (v). The preferences of her want-self

is given by, say, v ≻ u ≻ z ≻ y ≻ x and that of her should-self by x ≻∗ y ≻∗ z ≻∗ u ≻∗ v.

Suppose in this menu she eliminates the three worst alternatives according to her should-

self to avoid feelings of guilt and settles for the macaroons. Now, consider expanding the

menu by adding another option: chocolate chip cookie sundae - 2000 calories (w), with

w ≻ v and v ≻∗ w. It is possible that when this really tempting option is added to the

menu, consuming the other options do not induce the same feelings of guilt. This may

result in her eliminating only this option and choosing the Banoffee Nutella waffle, thereby

increasing her calorie intake by 710!

What is different? Although the logic of what drives menu effects in our model has

a similarity with that in the aforementioned models, its implications in terms of other

aspects of non-standard choices is quite different from these models. For instance, a key

departure from classical rationality that has received attention in the behavioral choice

theory literature pertains to violations of a condition called no binary cycles (NBC). As

the name suggests, choices satisfy NBC if they are not cyclical, e.g., if x is chosen from

{x, y}, and y from {y, z}, then x should be the chosen alternative from {x, z} and not

z. Manzini and Mariotti (2007) show that all violations of WARP can be classified as

either violations of NBC, or a condition referred to as always chosen (AC),12 or both.

Choices in all of the four models mentioned above can violate the condition of NBC.13

12AC says that if an alternative x in a menu S is such that it is chosen in every pair-wise comparison

with any other alternative from that menu, then x should be the chosen alternative in S.
13E.g., to see why the convex self-control model of Noor and Takeoka (2010) may violate NBC, refer back

to the cola example with the same values for the u and v functions used above. Then, in the choice problem

{y, z}, “utilities” from y and z are 3 and 2, respectively; hence c({y, z}) = y. In the choice problem {x, z},
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In sharp contrast, choices in our model always satisfy NBC. This observation makes for

an interesting testable distinction between our approach to self-control and that of these

models. In choice problems like the cola choice one above, both our model and these

models would tend to predict that between having no cola and a small cola, the DM will

choose no cola; and between a small cola and a large cola, she will choose a small cola.

However, when it comes to the choice between no cola and a large cola, whereas our model

predicts that she will be able to exercise self-control and choose no cola, these models

will often predict that she will choose the large cola. Beyond the significance that this

distinction has from the perspective of the broader taxonomy of non-standard choices, it

also has practical ramifications. As is well known, DMs who make cyclical choices may

be subject to money pumps. Therefore, an implication of these four models is that the

exercise of self-control in the way it is envisaged in them may leave the DM vulnerable

to money pumps. On the other hand, in our model, the exercise of self-control does not

expose the DM to money pumps made possible by such cyclical patterns of choice.

Another key difference between our model and these four is in relation to how overwhelmed

a DM’s ability to exercise self-control can get in the presence of highly tempting alterna-

tives. These four models have the feature that in such scenarios, the DM may be unable to

exercise any self-control and may end up choosing the most tempting alternative.14 This

is along the lines of the prediction in Strotz (1955)’s pioneering model, where the DM is

unable to exercise any self-control at the time of making choices. As opposed to this, in

our model, the DM is always able to exercise some level of self-control even in the presence

of highly tempting alternatives and she never ends up choosing the most tempting alter-

native. This difference in behavior points towards differences in the psychological drivers

underlying the scope of self-control in the two approaches. In our set-up, while adjudicat-

ing between the emotions of guilt and anxiety necessitated by the intrapersonal conflict,

the DM in terms of her sequential decision making procedure, prioritizes guilt avoidance.

Specifically, she never wants to subject herself to the guilt caused by choosing the most

tempting alternative in a menu and manages to muster the willpower to eliminate this

alternative from her consideration. In contrast, the underlying psychology behind decision

making in the other four models highlights the point that DMs may not be able to muster

this willpower. In other words, in terms of the guilt-anxiety conflict, these models can be

utilities from x and z are −3 and 2, respectively; hence, c({x, z}) = z. We have already shown above

that c({x, y}) = x. Together these choices violate NBC. In the limited willpower model of Masatlioglu,

Nakajima, and Ozdenoren (2020) with, say, a willpower stock of w = 3 and the same values of u and v, in

the choice problem {x, y}, since the self-control cost of choosing x is v(y)− v(x) = 3− 1 = 2 < 3, both x

and y are feasible to choose and, accordingly, c({x, y}) = x. Similarly both y and z are feasible in choice

problem {y, z} and, accordingly, c({y, z}) = y. But, in choice problem {x, z}, since v(z)− v(x) = 4 > 3, x

is not feasible. Hence, c({x, z}) = z.
14To see this, consider once again the convex self-control model of Noor and Takeoka (2010) and refer

back to the cola example with the following change. Let v(z) = 6 now with the other values for the u and

v functions same as the ones used above. Then, it is straightforward to verify that utilities from choosing

x, y and z in the menu {x, y, z} are −12, −2 and 2, respectively. Accordingly, c({x, y, z}) = z, the most

tempting alternative in this menu.
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thought of as prioritizing the role of anxiety caused by having to resist temptation. In-

deed, the cost of self-control that plays a central role in these models can be thought of as

measuring precisely the cost associated with this anxiety. In the models of Liang, Grant,

and Hsieh (2019) and Masatlioglu, Nakajima, and Ozdenoren (2020), we can clearly see

the primacy of the emotion of anxiety as the DM in these models can only consider those

alternatives in a menu for which this anxiety cost is not too high. In Noor and Takeoka

(2010) and Noor and Takeoka (2015) this primacy shows up through the non-linearity of

the cost function. Another way of seeing the difference between the two approaches is

by noting that whereas in these four models the primary driver is the psychological cost

associated with exercising self-control, i.e., the anxiety produced by resisting temptation,

in our model it is the psychological cost associated with not exercising any self-control, i.e.,

the guilt produced by totally succumbing to temptation. In reality, when faced with self-

control problems, both types of DMs presumably exist, some for whom anxiety is the more

primary of the two emotions and others for whom guilt is. The existing literature has done

a great job in expanding our understanding of the behavior of the former type of DMs.

We believe that our paper can contribute to the self-control literature by highlighting the

behavior of the latter type.

The rest of the paper is organized as follows. In the next section we define and provide

a behavioral characterization of the SCH along with outlining the extent to which the

parameters of the model can be uniquely identified from choice data. In Section 4 we

consider two variants of our choice procedure, one which looks at a generalization and

another which studies a special case of the SCH model. Then, in Section 5 we situate our

work in the context of related behavioral choice theory models in the literature. Finally,

Section 6 discusses some welfare implications. Proofs of results appear in the Appendix.

3 The Self-Control Heuristic

We consider a DM and the choices she makes in different choice problems. Formally, let X

be a finite set of alternatives with typical elements denoted by x, y, z etc. P(X) denotes

the set of non-empty subsets of X with typical elements denoted by S, T etc., which we

refer to as choice problems or menus. A choice function c : P(X) → X is a mapping that,

for any S ∈ P(X), specifies the alternative c(S) ∈ S that the DM chooses in that choice

problem.

In the model that we develop, the DM arrives at her choice in any choice problem by a two

stage sequential procedure. Specifically, in each of the stages, she makes use of a distinct

strict preference ranking on X (By a strict preference ranking, we mean a binary relation

that is total, asymmetric and transitive). We think of the ranking associated with the first

stage, denoted by ≻∗ ⊆ X ×X, as reflecting what she thinks she should choose; and that

11



associated with the second stage, denoted by ≻ ⊆ X × X, as reflecting what she wants

to choose. Faced with any menu of alternatives, in the first stage, the DM eliminates a

non-empty, strict subset of these alternatives that are worst according to ≻∗. These are

precisely the alternatives that the DM feels she should not choose in that menu and, if

chosen, would produce a significant sense of guilt in her. Therefore, eliminating these

alternatives from her consideration helps her avoid these feelings of guilt. Then, in the

second stage, amongst the remaining alternatives, she picks the best one according to ≻.

We refer to the set of alternatives eliminated in the first stage as the DM’s should not

set in the menu under consideration. To define this formally, let P∗(X) denote the set of

non-singleton subsets of P(X).

Definition 3.1. For any S ∈ P∗(X), W≻∗(S) ( S, W≻∗(S) 6= ∅, is a should not set

of S if for any x ∈ S \ W≻∗(S) and y ∈ W≻∗(S), x ≻∗ y. A should not set mapping

W≻∗ : P∗(X) → P(X) specifies for each S ∈ P∗(X) a should not set W≻∗(S).

That is, a should not set W≻∗(S) of a menu S ∈ P∗(X) is a non-empty strict subset of

S containing its k worst alternatives according to ≻∗, where 0 < k < |S|. We adopt the

convention that W≻∗(S) = ∅ when S is a singleton.

We next note a key property of a should not set mapping. This property pertains to a

relationship that may exist between W≻∗(S) and W≻∗(T ) when S ⊆ T . As we discussed

in the last section, this relationship depends on the ≻∗-worst alternatives in S and T ,

denote them by zS and zT , respectively (of course, it is possible that zS = zT ).
15 These

alternatives, by contextualizing the scope of guilt in the two menus, play a key role in

determining W≻∗(S) and W≻∗(T ) and, accordingly, any relationship that may exist be-

tween them. Specifically, if zT = zS , i.e., none of the alternatives in T \ S happen to be

worse according to ≻∗ than zS , then the DM’s perception of the guilt associated with any

alternative that was eliminated in S does not change in T and, therefore, this alternative

continues to be eliminated in T . This means that in this case, W≻∗(S) ⊆W≻∗(T ). On the

other hand, if zS ≻∗ zT , i.e., at least one of the alternatives in T \ S happens to be worse

according to ≻∗ than zS , then the DM’s context about which alternatives from S should

not be chosen may change in T . Specifically, it is possible that there may exist alternatives

that are eliminated in S but which no longer induce the same feelings of guilt in T and,

hence, are not eliminated in it. Accordingly, in this case, the inclusion W≻∗(S) ⊆W≻∗(T )

may not hold. This important property of a should not set mapping which we refer to as

quasi-monotonicity, is formally stated in the following definition.

Definition 3.2. A should not set mapping W≻∗ : P∗(X) → P(X) is quasi-mononotonic

if for any S, T ∈ P∗(X),

[S ⊆ T s.t. zT = zS ] =⇒W≻∗(S) ⊆W≻∗(T )
15Since ≻∗ is a strict preference ranking, for any S there exists a unique ≻∗-worst alternative zS ∈ S,

i.e., x ≻∗ zS, for all x ∈ S \ {zS}.
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We can now formally define the choice procedure. To do so, in the way of notation, for

any S ∈ P(X), denote the singleton set consisting of its ≻-maximal element by M(S;≻),

i.e.,

M(S;≻) = {x ∈ S : x ≻ y, ∀y ∈ S \ {x}}

Definition 3.3. A choice function c : P(X) → X is a self-control heuristic (SCH) if

there exists an ordered pair of strict preference rankings (≻∗,≻) on X and a should not

set mapping W≻∗ : P∗(X) → P(X) that is quasi-monotonic, such that for any S ∈ P(X):

c(S) =M(S \W≻∗(S);≻)

We conclude our discussion of the model set-up with a few remarks.

Remark 3.1. The restriction of quasi-monotonicity on a should not set mapping appears

fairly plausible from a behavioral perspective because of the reasons we have stated above.

However, we do acknowledge that one may be able to construct theoretical possibilities

where it may fail to hold. For instance, think of a DM who follows a heuristic under which

for all choice problems with cardinality greater than 3 the two worst alternatives according

to ≻∗ get eliminated. It is straightforward to verify that in this case the should not set

mapping is not quasi-monotonic. In order to address such possibilities, in Section 4.2, we

analyze a generalization of the current model in which no restriction is imposed on this

mapping.

Remark 3.2. We had stated in the last section that the key qualification maintained in

the statement of the quasi-monotonicity condition is what is at the heart of menu effects

in our model. Specifically, W≻∗(S) ⊆W≻∗(T ) for S ⊆ T is necessarily the case only when

zT = zS . However, this set inclusion need not hold if zT 6= zS , i.e., if T contains alternatives

that are ≻∗-worse than zS . To the contrary, if this qualification is not maintained and we

insist on full monotonicity for the should not set mapping, i.e., W≻∗(S) ⊆ W≻∗(T ) for all

S ⊆ T , then the model reduces to the rational choice benchmark with choices satisfying

WARP and no menu effects.16 The following result establishes this.

Proposition 3.1. If W≻∗ : P∗(X) → P(X) is a should not set mapping satisfying

W≻∗(S) ⊆W≻∗(T ) for any S ⊆ T and c is a choice function such that for any S ∈ P(X),

c(S) =M(S \W≻∗(S);≻),

then c satisfies WARP. Specifically, for any S ∈ P(X),

c(S) = {x ∈ S : x ≻∗ y,∀y ∈ S \ x}
16Recall that WARP imposes the following consistency on a DM’s choices: for all S, T ∈ P(X) and

x, y ∈ S ∩ T , x 6= y, if c(S) = x then c(T ) 6= y. That is, if x is chosen in the presence of y, then y should

never be chosen in the presence of x. If choices satisfy WARP, then they can be rationalized by a single

strict preference ranking that can be uniquely elicited from these choices.
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Remark 3.3. In terms of our modeling choice, we have opted for an ordinal approach here.

Part of the reason for this is to keep our primitive set-up comparable with the approach

adopted in most of the behavioral choice theory literature. It is possible, of course, to

develop the analysis based on a more “cardinal” approach, like in the papers within the

GP framework discussed in the last section. A natural way of doing this would be to

consider lotteries over X and preferences ≻∗ and ≻ of the should and want selves over the

set of lotteries. On this richer domain, we can do the analysis in terms of two cardinal

utility functions (in the vN-M sense) representing ≻∗ and ≻, respectively. Whereas we do

see merit in pursuing such an approach, in this paper, we stick to the ordinal approach

with the goal of comprehensively understanding its behavioral underpinnings, leaving the

analysis of the cardinal approach for future work.

3.1 Behavioral Characterization

Suppose we observe the choices of a DM. When can we conclude by observing these choices

that they are a result of this DM choosing according to an SCH. To answer this question,

we next provide a behavioral characterization of an SCH. That is, we provide conditions

on choice behavior that allow us to identify an ordered pair (≻∗,≻) of strict preference

rankings and a quasi-monotonic should not set mapping W≻∗ : P∗(X) → P(X), such that

with respect to these rankings and the mapping, choices have an SCH rationalization.

An SCH is characterized by a single condition. To introduce this condition, first, note

that for a DM who chooses according to it, the binary choice comparison between any

pair of alternatives, x and y, reveals which one is preferred according to the preferences of

her should-self. This is because the worse of the two according to these preferences gets

eliminated and cannot be the chosen alternative. Next, for any menu S ∈ P∗(X), consider

the following collection of its supersets:

TS = {T ∈ P∗(X) : S ⊆ T and x ∈ T \ S ⇒ ∃y ∈ S s.t. c(xy) = x}

Note that S ∈ TS . Further, the sets in TS are precisely those supersets of S to which the

content of the quasi-monotonicity condition applies. This is because for any such T , if

x ∈ T \ S, there exists y ∈ S s.t. c(xy) = x; hence, based on what we said above about

inferences that can be made from binary choice comparisons, we can conclude that none

of the alternatives in T \ S can be the worst one in T according to the preferences of

the DM’s should-self. In other words, it can be inferred that the worst alternative in T

according to these preferences is the same as that in S and, therefore, the implication of

quasi-monotonicity applies to the S ⊆ T inclusion.

Now, to state our characterization result, we define a binary relation Pc on X based on

the DM’s choice function c as follows:
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• for any x, y ∈ X,x 6= y, xPcy if ∃ S ∈ P∗(X), s.t. x = c(S), y ∈ S and for some

T ∈ TS, either y = c(T ) or y = c({c(T ), y}).

The interpretation of the binary relation Pc for a DM who chooses according to the SCH

is straightforward. If either y = c(T ) or y = c({c(T ), y}), we can infer that y /∈ W≻∗(T ).

Further, since T ∈ TS allows us to determine that the antecedent of the quasi-monotonicity

condition applies for the S ⊆ T inclusion, we can conclude thatW≻∗(S) ⊆W≻∗(T ); hence,

y /∈ W≻∗(S), i.e., y ∈ S \ W≻∗(S). Since c(S) = x, this therefore reveals to us that

according to the DM’s want-self, x is preferred to y. In other words, Pc captures choice

based inferences that can be made about the preferences of the DM’s want-self.

It turns out that determining whether a choice function c is an SCH or not simply boils

down to checking whether the binary relation Pc induced by it is acyclic or not.

Theorem 3.1. A choice function c is an SCH if and only if Pc is acyclic.

Proof: Please refer to Section A.1.3.

Behavioral implications: At this stage a remark on the type of non-standard behavior that

an SCH can and cannot accommodate is in order. The content of the remark is motivated

by the observation that when it comes to violations of rational choice theory seen in

experiments and field studies, three prominent classes of violations have been highlighted

in the literature. These are violations of the conditions of always chosen (AC), no binary

cycles (NBC) and never chosen (NC).

Definition 3.4. A choice function c : P(X) → X satisfies:

1. AC if for all S ∈ P(X) and x ∈ S: [c(xy) = x,∀y ∈ S \ {x}] ⇒ c(S) = x

2. NBC if for all x1, . . . , xn+1 ∈ X: [c(xixi+1) = xi, i = 1, . . . , n] ⇒ c(x1xn+1) = x1

3. NC if for all S ∈ P(X) and x ∈ S: [x 6= c(xy),∀y ∈ S \ {x}] ⇒ c(S) 6= x

Manzini and Mariotti (2007) show that all violations of WARP can be categorized as

either violations of AC or violations of NBC (or both). The SCH model can accommodate

violations of AC as the example of the compromise effect (where AC is violated) clarifies.

However, as the following result establishes, it cannot accommodate violations of NBC

nor those of NC, thus making falsifiability of the model transparent in the context of

well-known patterns of non-standard choice behavior.

Proposition 3.2. If Pc is acyclic, then c satisfies NBC and NC.

Proof: Please refer to Section A.1.2.
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We now present a couple of examples which show how, for a given choice data set, we can

verify whether these choices are an SCH by checking for the acyclicity of Pc.

Example 3.1. (Not an SCH). Let X = {x, y, z, w, v} and consider the choice function

specified in the table below.

S xy xz xw xv yz yw yv zw zv wv xyz xyw xyv

c(S) x x x x y y y z z w x x x

S xzw xzv xwv yzw yzv ywv zwv xyzw xyzv xywv xzwv yzwv xyzwv

c(S) x x x y y y z y y y z z z

This choice function is not an SCH. To show this, we demonstrate that the binary re-

lation Pc is not acyclic. To that end, first, note that for the menu {x, y, w}, Txyw =

{{x, y, w}, {x, y, z, w}}.17 Accordingly, c(xyw) = x and c(xyzw) = y implies xPc y. Fur-

ther for the menu {x, y, z, w}, since {x, y, z, w} ∈ Txyzw, c(xyzw) = y and c(xy) = x

implies yPc x. Hence, Pc is not acyclic.

Example 3.2. (An SCH). Let X = {x, y, z, w, v} and consider the choice function c on

X specified in the table below.

S xy xz xw xv yz yw yv zw zv wv xyz xyw xyv

c(S) x x x x y y y z z w x x x

S xzw xzv xwv yzw yzv ywv zwv xyzw xyzv xywv xzwv yzwv xyzwv

c(S) x x w y y w w x x w w w w

We verify that Pc is acyclic and hence c is an SCH. To that end, we elicit Pc. First, consider

the menu S = {x, y, z, w, v}. Since c(S) = w; and c(xw) = x, c(yw) = y and c(zw) = z,

we get that wPcx, wPcy and wPcz. We can also determine the following:

- xPcy as x = c(xyv), {xywv} ∈ Txyv since c(wv) = w, and y = c({c(xywv), y})

- xPcz as x = c(xzv), {xzwv} ∈ Txzv since c(wv) = w, and z = c({c(xzwv), z})

- yPcz as y = c(yzv), {yzwv} ∈ Tyzv since c(wv) = w, and z = c({c(yzwv), z})

It can also be verified that these are all the inferences about Pc that can be made from

choices. Accordingly, Pc = {(w, x), (w, y), (w, z), (x, y), (x, z), (y, z)} and hence is acyclic.

17It is straightforward to see that {x, y, z, w} ∈ Txyw as z = c(zw). On the other hand, any T̂ ⊇ {x, y, w}

s.t. v ∈ T̂ does not belong to Txyw as v 6= c(xv), c(yv), c(wv).
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3.2 Identification

We next address the question of how uniquely the parameters underlying an SCH can be

identified. The preferences, ≻∗, of the DM’s should-self can be uniquely identified from

choices, specifically, from pairwise choice comparisons.

Proposition 3.3. If (≻∗,≻,W≻∗) and (≻̃∗, ≻̃,W≻̃∗) are both SCH representations of a

choice function c, then ≻∗= ≻̃∗.

The proof is immediate since x ≻∗ y iff x = c(xy) iff x ≻̃∗y.

The identification of the want-self’s preferences, however, may be less precise. To explain

this, we first formally define the notion of revealed preferences of the model w.r.t. the

preferences of the want-self.

Definition 3.5. Let c be an SCH. We define the revealed preference relation Pr on X by:

for any x, y ∈ X, x 6= y, xPry if for any SCH representation (≻∗,≻,W≻∗) of c, we have

x ≻ y.

In other words, x is revealed to be preferred to y, if in any SCH representation of choices,

it is the case that according to the preferences of the want-self, x ranks over y.

Now, recall the binary relation Pc that we defined in the last section: for any x, y ∈ X,

x 6= y, xPcy if ∃ S ∈ P∗(X), s.t, x = c(S), y ∈ S and for some T ∈ TS, y = c(T ) or

y = c({c(T ), y}). It is straightforward to verify that if the DM’s choices are an SCH, then

Pc ⊆ Pr. This is because if like in the definition above of Pc, y = c(T ) or y = c({c(T ), y})

for some T ∈ TS, then y /∈W≻∗(T ). Further, T ∈ TS implies that the ≻∗-worst alternative

of T is the same as that of S. Accordingly, since W≻∗ under an SCH is quasi-monotonic,

it follows that W≻∗(S) ⊆ W≻∗(T ). Hence, y /∈W≻∗(S) and, since x = c(S), we have x ≻ y

for any SCH representation, (≻∗,≻,W≻∗), of c.

Next, note the following observation. If xPcy and yPcz, then in any SCH representation,

we have x ≻ y and y ≻ z. But, ≻ is transitive which implies that x ≻ z must be true

in any such representation as well. Therefore, xPrz even though it may not be the case

that xPcz is directly elicited from choices. In other words, denoting by P ∗
c the transitive

closure of Pc, it follows that P ∗
c ⊆ Pr. The following result establishes that the inclusion

also goes in the other direction. That is, the binary relation P ∗
c captures the full extent of

revealed preferences w.r.t. the preferences of the DM’s want-self in the SCH model.

Proposition 3.4. Let c be an SCH. Then Pr = P ∗
c .

Proof: Please refer to Section A.1.4.
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Finally, as far as the identification of the should not sets are concerned, these too may not

be identified exactly. But we can provide bounds on these sets that for a rich enough set

of outcomes can be quite tight. To that end, define for any S ∈ P∗(X), the set:

D(c(S)) = {x ∈ S : c({c(S), x}) = c(S)}

Since pairwise choice comparisons allow us to uniquely identify the preferences ≻∗ of the

DM’s should-self, the set D(c(S)) contains those alternatives in the menu S that are worse

according to these preferences than the chosen alternative from it, c(S). Further, since

c(S) is not eliminated in S and the ones that are must be worse than it according to these

preferences, we can conclude that, under any SCH representation of c, W≻∗(S) ⊆ D(c(S)).

Next, we draw on the collection TS of supersets of S and the observation that the ≻∗-

worst alternative in any menu T ∈ TS is the same as that in S. Accordingly, given that the

should not set mapping under an SCH is quasi-monotonic, we have W≻∗(S) ⊆W≻∗(T ) for

any such T . Further, W≻∗(T ) ⊆ D(c(T )). Putting all of this together, therefore, allows

us to conclude that in any SCH representation of c, W≻∗(S) must be contained in the set
⋂

T∈TS
D(c(T )). Further, for any S ∈ P∗(X), let:

Z(S) = {z ∈ S : c(xz) = x,∀x ∈ S \ z}

It should be obvious that under any SCH representation of c, Z(S) is a singleton and

contained in W≻∗(S). As such, the following result follows:

Proposition 3.5. Let c be an SCH. Then for any any SCH representation (≻∗,≻,W≻∗)

of c and any S ∈ P∗(X), Z(S) ⊆W≻∗(S) ⊆
⋂

T∈TS
D(c(T )).

Example 3.2 (continued). To better understand the extent of identification under an

SCH, refer back to Example 3.2. The table below specifies for each choice problem S, the

chosen alternative c(S) as well as the sets D(c(S)), E(S) :=
⋂

T∈TS
D(c(T )) and Z(S).

S xy xz xw xv yz yw yv zw zv wv xyz xyw xyv

c(S) x x x x y y y z z w x x x

D(c(S)) y z w v z w v w v v yz yw yv

E(S) y z w v z w v w v v yz yw v

Z(S) y z w v z w v w v v z w v

S xzw xzv xwv yzw yzv ywv zwv xyzw xyzv xywv xzwv yzwv xyzwv

c(S) x x w y y w w x x w w w w

D(c(S)) zw zv v zw zv v v yzw yzv v v v v

E(S) zw v v zw v v v yzw v v v v v

Z(S) w v v w v v v w v v v v v

From the binary choice problems, we can uniquely identify the ≻∗ ranking, specifically,

x ≻∗ y ≻∗ z ≻∗ w ≻∗ v. The set D(c(S)) for any menu S is straightforward to determine

by looking at the pairwise choice problems involving c(S) and other alternatives in that
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menu. We can then determine the set E(S) =
⋂

T∈TS
D(c(T )) by looking at the set TS. For

instance, for the menu {x, y, v}, Txyv = {{x, y, v}, {x, y, z, v}, {x, y, w, v}, {x, y, z, w, v}}

and, accordingly, E(xyv) = {y, v} ∩ {y, z, v} ∩ {v} ∩ {v} = {v}. Further, in Example

3.2 we elicited the binary relation Pc = {(w, x), (w, y), (w, z), (x, y), (x, z), (y, z)}. Its

transitive closure P ∗
c is the same as Pc. So, the revealed preferences of the DM’s want-self

in this case is the ranking wPrxPryPrz. In other words, we can almost uniquely identify

the preferences of the want-self with only the position of the worst alternative under the

≻∗ ranking, v, being indeterminate.

4 Extensions

In this section, we consider two extensions of the SCH model. First, we look at a special

case of an SCH in which the DM follows a simple heuristic of eliminating just the worst

alternative according to the preferences of her should-self in any menu S ∈ P∗(X). Then,

we look at a generalization of an SCH in which we impose no restriction on the structure

of the should not set mapping (like quasi-monotonicity).

4.1 Specialized SCH

In a specialized SCH (SSCH), the DM’s should not sets are singletons and consists of

the worst alternative according to the preferences of her should-self in any menu under

consideration. To formally define this heuristic and the should not sets under it, for any

S ∈ P∗(X), denote the singleton set consisting of its ≻∗-worst alternative by:

M(S;≻∗) = {z ∈ S : y ≻∗ z, ∀y ∈ S \ z}

Definition 4.1. A choice function c : P(X) → X is an SSCH if there exists an ordered

pair of strict preference rankings (≻∗,≻) on X such that for any choice problem S ∈ P(X),

c(S) =M(S \M (S;≻∗);≻)

It is straightforward to verify that the should not set mapping under an SSCH is indeed

quasi-monotonic and hence an SSCH is a special case of an SCH.

4.1.1 Behavioral Characterization

We next address the question about the behavioral characterization of an SSCH. Like an

SCH, it is characterized by one condition. To state the condition, we define a binary

relation Qc on X based on the DM’s choice function c as follows:
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• for any x, y ∈ X,x 6= y, xQcy if for some S ∈ P∗(X), x = c(S), y ∈ S and ∃ T ∈ TS
s.t. for some T̂ ⊆ T, |T̂ | ≥ 2, y = c(T̂ ).

The interpretation of Qc is similar to that of Pc and it should be straightforward to verify

that Pc ⊆ Qc. Specifically, for a DM who chooses according to an SSCH, if y = c(T̂ ), then

we can infer that y cannot be the ≻∗-worst alternative in T . This is because if it were,

given that T̂ ⊆ T , it would be the worst such alternative in T̂ as well and not be chosen

in it. Further, since T ∈ TS implies that the ≻∗-worst alternative in S and T is the same,

we can conclude that y is not the ≻∗-worst alternative in S. Hence, given that c(S) = x,

this reveals that according to the DM’s want-self, x is preferred to y.

Theorem 4.1. A choice function c is an SSCH if and only if Qc is acyclic.

Proof: Please refer to Section A.2.1.

4.1.2 Identification

Next, we look at the question of how uniquely the parameters underlying an SSCH can be

identified. The following result establishes that identification of the preferences, specifically

those of the want-self, is generally more precise under an SSCH than under an SCH. In

the way of notation, note that for any binary relation B on X and any S ∈ P∗(X), B|S
denotes the restriction of B to the set S.

Proposition 4.1. If (≻∗,≻) and (≻̃∗, ≻̃) are both SSCH representations of a choice func-

tion, then ≻∗= ≻̃∗; and ≻|X\M (X;≻∗) = ≻̃|X\M(X;≻̃∗), whenever |X| > 2.

Proof: Please refer to Section A.2.2.

In other words, in an SSCH representation, the preferences of the DM’s should-self is

uniquely identified like in an SCH representation; and the preferences of her want-self is

identified almost uniquely with only the position of the worst alternative under the former

preferences being indeterminate under the latter.

4.2 Generalized SCH

Under an SCH, the should not set mapping satisfies the quasi-monotonicity condition. A

natural question to ask is what if a DM’s choice procedure w.r.t. the elimination process

does not follow this condition. With these kind of DMs in mind, we now propose a

generalization of the SCH model in which the should not set mapping is not subject to

any restrictions.
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Definition 4.2. A choice function c : P(X) → X is a generalized self-control heuristic

(GSCH) if there exists an ordered pair of strict preference rankings (≻∗,≻) on X and a

should not set mapping W≻∗ : P∗(X) → P(X), such that for any S ∈ P(X):

c(S) =M(S \W≻∗(S);≻)

4.3 Behavioral Characterization

To behaviorally characterize this model, we first define a binary relation Rc on X based

on the DM’s choice function c as follows:

• for any x, y ∈ X, xRcy if ∃ S ∈ P∗(X) s.t. x = c(S), y ∈ S and z = c(yz) for all

z ∈ S \ y.

Note that if x = c(xy), then xRcy. But, Rc may contain more information than what can

be elicited from pairwise choice comparisons. For instance, Rc need not be asymmetric.

To see this, consider a choice function which violates NC. This means that for some S, we

have c(S) = x and c(xy) = y for all y ∈ S \ x. In this case, we have xRcx.

Theorem 4.2. A choice function c is a GSCH if and only if Rc is acyclic.

Proof: Please refer to Section A.2.4.

The following result helps us better situate the different versions of our model in the

context of non-standard choices. It establishes that the set of all choice functions that

satisfy NC and NBC are precisely the set of all GSCHs.

Proposition 4.2. Rc is acyclic if and only if c satisfies NBC and NC.

Proof: Please refer to Section A.2.3.

4.4 Identification

Because the GSCH model does not impose any structure on the should not set mapping,

it may lack precision when it comes to the identification of its underlying parameters. The

preference ranking ≻∗ reflecting the DM’s should-self is still uniquely identified. However,

the preference ranking ≻ reflecting her want-self may be identified less precisely. Specif-

ically, the extent of revealed preferences w.r.t. this ranking is limited to the transitive

closure of the following binary relation Bc on X: for any x, y ∈ X, x 6= y, xBcy if there
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exists S ∈ P(X) such that x = c(S) and y = c(xy). Finally, as far as the identification of

the should not sets are concerned, the following bounds apply:

Z(S) ⊆W≻∗(S) ⊆ D(c(S))

As such, the identification of the should not sets in the model may not be that precise when

compared to an SCH. This is a limitation of the model as one of the important features of

the decision making process that an analyst may seek information about is precisely the

should not sets.

Example 3.2 (continued). To contrast the extent of identification under a GSCH with

that under an SCH, refer back to Example 3.2. Recall in that example, the revealed pref-

erences w.r.t. the preferences of the DM’s want-self was given by the ranking wPrxPryPrz.

Contrast this with the inferences that an outside observer would make if she analyzes this

choice data as a GSCH without the additional restriction of quasi-monotonicity on the

should not set mapping. In that case, the identification of the preferences of the want-self

would be much less precise. The reason for this is because in a GSCH the should not sets

are identified much less precisely—for any menu S, all we can say is that the should not set

of S is contained in D(c(S)). On the other hand, for an SCH we can ascertain that this set

is contained in
⋂

T∈TS
D(c(T )). For instance, for the menu S = {x, y, z, v} in the example,

all that we can determine about the should not set for the case of a GSCH is that it is

contained in {y, z, v}, whereas for an SCH it is exactly identified as {v}. Consequently,

the revealed preferences w.r.t. the DM’s want-self that can be ascertained by analyzing

choices in this example within a GSCH framework is a strict subset of that under an SCH

and is given by the binary relation {(w, x), (w, y), (w, z)}.

5 Comparisons with other behavioral choice models

We now compare the SCH and its variants, the SSCH and GSCH, with other related

behavioral choice theory models in the literature, especially in the context of the question

of accommodating non-standard choice behavior. As mentioned earlier, violations of AC,

NBC and NC form the leading exemplars of non-standard choice behavior. Different

models can accommodate different combinations of these violations. The SCH model and

both its variants satisfy NBC and NC. Therefore, in terms of this typology, the only type

of violation of classical rationality that they can accommodate is that of AC.

The above observation helps immediately clarify why the SCH model is distinct from the

influential Rational Shortlist Method (RSM) or, more generally, the sequentially rational-

izable model that Manzini and Mariotti (2007) introduce. A choice function c is an RSM

if there exists an ordered pair of asymmetric binary relations (P1, P2) on X such that for
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any menu S, the choice is given by:18

c(S) = max(max(S;P1);P2)

It is fairly straightforward to establish that an RSM satisfies AC and the only violations

of classical rationality it can accommodate are those of NBC. Therefore, the behavioral

implications of the SCH model when it comes to accommodating non-standard data can

be thought of as orthogonal to that of the RSM. However, one feature that is common is

that both RSM and our model satisfy NC.

RSM is characterized by two axioms: weak WARP and expansion. Weak WARP is a key

axiom in the behavioral choice theory literature and therefore we formally state it.

Definition 5.1. A choice function c : P(X) → X satisfies weak WARP if for all S, T ∈

P(X) and x, y ∈ X:

[

{x, y} ⊆ S ⊆ T, x = c(xy) = c(T )
]

⇒ y 6= c(S)

Several important models in the literature are characterized by it, e.g., the Rationalization

model of Cherepanov, Feddersen, and Sandroni (2013) and the Categorize then Choose

(CTC) model of Manzini and Mariotti (2012). Therefore, a natural question is whether

our model satisfies this condition.

Proposition 5.1. An SCH (and accordingly GSCH) may not satisfy weak WARP but an

SSCH does.

Proof: Please refer to Section A.3.1.

Therefore, we can conclude that SCH is not a special case of the Rationalization and

CTC models but SSCH is. In terms of accommodating non-standard choices, both the

Rationalization and CTC model can accommodate violations of NC, AC and NBC. This

last observation should also clarify the fact that there exist choice functions that satisfy

weak WARP but are not SCH.

There are many models which further explore two-stage sequential choice procedures. Au

and Kawai (2011) and Horan (2016) consider the RSMmodel but with transitive rationales.

Both these models, like RSM, accommodate violations of NBC but not of AC. Another

model in this class of models which resonates with our work is the Two-Stage Chooser

(TSC) model of Bajraj and Ülkü (2015). They model a DM who sequentially uses two

rationales, which are both strict preference rankings, to make choices. In the first stage,

the DM shortlists the top two alternatives according to the first ranking and then in the

18For this model, for any asymmetric binary relation P , we define: max(S;P ) = {x ∈ S : ∄y ∈ S s.t.

yPx}
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second stage, chooses between them according to the second ranking. Like in our models,

the TSC model can accommodate violations of AC but not that of NBC and NC. Given

this similarity, it naturally raises the question as to whether any of these models is a special

case of the other. We show in Section A.3.2 that this is not the case.

Another class of behavioral choice theory models builds on the observation that in many

choice problems a DM may not pay attention to all the available alternatives owing to

cognitive limitations or unawareness. The DM thus forms a consideration set in the first

stage, i.e., a set of alternatives which receive her attention in a choice problem. She then

maximizes in that set like a standard rational agent. A prominent example of this class

of models is the Choice with Limited Attention (CLA) model of Masatlioglu, Nakajima,

and Ozbay (2012). In the CLA model, the consideration set mapping is required to be an

attention filter i.e., if an alternative is not considered by the DM, then her consideration

set does not change when this alternative becomes unavailable. Formally, a consideration

set mapping Γ is an attention filter if for any S, Γ(S) = Γ(S \x) whenever x /∈ Γ(S). Once

the consideration set is formed in the first stage, the DM chooses the best alternative

from it based on a strict preference ranking. This choice procedure is characterized by the

WARP(LA) axiom.

Definition 5.2. WARP(LA): For any S ∈ P(X), there exists x∗ ∈ S such that, for any

T including x∗,

if c(T ) ∈ S and c(T ) 6= c(T \ x∗), then c(T ) = x∗.

The following result establishes the relationship between our model and the CLA.

Proposition 5.2. An SCH (and accordingly GSCH) may not satisfy WARP(LA) but an

SSCH does.

Proof: Please refer to Section A.3.3.

Therefore, SCH is not a special case of CLA but SSCH is. Another model that relates

to the CLA is the Overwhelming Choice (OC) model of Lleras et al. (2017) that studies

how the phenomenon of choice overload may cause DMs to consider only a strict subset

of the available alternatives. The consideration set mapping that they employ to convey

this idea is that of a competition filter, which says that if an alternative is considered in

a set, then it must also be considered in any of its subsets where it is present. Formally,

Γ is a competition filter if whenever x ∈ S ⊆ T and x ∈ Γ(T ), then x ∈ Γ(S). In terms of

characterization, this model can be rationalized by weak WARP and hence an SCH (and

accordingly GSCH) is not a special case of an OC but an SSCH is.

Another strand of literature which relates to our paper is that of threshold models. In these

models a DM forms her consideration sets by considering all those alternatives in a choice

problem which meet certain criteria or are above a certain threshold. She then maximizes
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on this set like a rational DM. The two-stage threshold model of Manzini, Mariotti, and

Tyson (2013) is built around such an idea. One major distinction between their model

and ours is that they use a “cardinal” approach as opposed to our ordinal one. Secondly,

the behavioral implications of the two models are different—choices in their model need

not satisfy NBC like in ours. Another paper of interest in this line of work is Kimya

(2018). In the Choice through Attribute Filters (CAF) model developed in this paper,

alternatives have observable attributes and the DM forms consideration sets (attribute

filters) based on these attributes. Specifically, a multi-criteria choice data set specifies

(i) a finite set of alternatives X ⊆ Rk
++, where each alternative x = (x1, . . . , xk) ∈ X

has k attributes and (ii) a choice function on the set of alternatives. A consideration set

mapping Γ is an attribute filter if for each S ∈ P(X), there exists a threshold tS ∈ Rk such

that Γ(S) = {z ∈ S : z > tS}.19 Further in an attribute filter, the thresholds must not

“overreact” when an alternative is added to a menu. Specifically, when an alternative x

is added to S such that x is above the threshold of attribute i, i.e., xi > tSi , the threshold

on attribute i in S ∪ x can only increase, but never to the point that it leads the DM to

eliminate some alternative y with yi > xi. Similarly, when an alternative x that is below

the threshold of attribute i is added, the threshold can only decrease, but never to the

point that it leads the DM to consider some alternative y with yi < xi. A choice function

c is a CAF if there exists a strict preference ranking ≻ over X that is monotonic (w.r.t.

attributes) and an attribute filter Γ such that c(S) is the ≻-best element in Γ(S) for every

S ∈ P(X). A CAF can accommodate violations of NC.20 Therefore, CAF is not a special

case of our models. We show in Section A.3.4 that an SCH is also not a special case of

CAF.

6 Welfare

We conclude with a few comments about welfare. As is well known, welfare analysis with

behavioral DMs is not as clear cut as with rational decision makers. In this regard, there

have been arguments made in the literature for both a model free approach [e.g., Bernheim

and Rangel (2009)], as well as a model based approach [e.g., Masatlioglu, Nakajima, and

Ozbay (2012)] to doing behavioral welfare analysis.The key distinction between the two

approaches is that the latter takes a stand on the particular choice procedure that DMs in

question employ to arrive at their choices whereas the former does not. Masatlioglu, Naka-

jima, and Ozbay (2012) make the case that if a DM follows a particular choice procedure,

then a policy maker should take this into account when making welfare judgments as the

procedure may be informative for the welfare analysis. They point out that by ignoring

19Note that z > tS if zi > tSi for each i = 1, . . . , k.
20For an example of this, refer to the choices relating to the compromise effect mentioned in Section II.C

of Kimya (2018).
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this information, the model free approach may produce erroneous welfare conclusions.21

Our work here suggests another reason why some understanding of the procedure by which

DMs make choices may matter for welfare, specifically for the question about whether an

intervention on the part of the policy maker is at all called for.

To understand the last observation, consider the following pattern of menu dependent

non-rational choices over three alternatives x, y and z: c(xyz) = y, c(xy) = x, c(xz) = x,

c(yz) = y. If the DM making these choices is of, say, the SSCH type, then we can

conclude that the preferences x ≻∗ y ≻∗ z and y ≻ x ≻ z of the should and want selves,

respectively, rationalize these choices. Alternatively, consider the possibility that these are

the choices of a DM who follows the CLA model of Masatlioglu, Nakajima, and Ozbay

(2012). Specifically, suppose we can elicit that her tastes are specified by the ranking y

≻̂ x ≻̂ z and her consideration set mapping by Γ(xy) = x, Γ(xz) = xz, Γ(yz) = yz,

Γ(xyz) = xyz. That is, the alternative y gets the DM’s attention only in the presence of

z, otherwise, she considers all alternatives.

Are the welfare implications in terms of the desirability of any kind of intervention different

for the two scenarios? We certainly think that they are. If the policy maker happens to

know that the DM in case is of the CLA type, then some kind of intervention, albeit

of the soft type, may be desirable. Perhaps, she can tinker with the choice architecture

so that alternative y draws the DM’s attention generally and not just when z is part of

the menu. On the other hand, we do not think any such intervention on the part of the

policy maker is desirable if the DM is of the SSCH type. Such a DM is faced with a non-

trivial intrapersonal conflict and makes the best choices she can while trying to balance

her emotions of anxiety and guilt. There is not much, if anything, that the policy maker

can do to help her make better choices. The policy maker is best advised to leave this DM

alone. Hence, our claim that the two situations are different and the ability to draw this

distinction comes about precisely from taking cognizance of the choice procedure through

which choices are generated.

The fact that the scope for welfare interventions is limited with the type of behavioral

DMs we have modelled in this paper is generally true. Perhaps, a case can be made that

if the policy maker is sure that some choices of our DM are being made in a severely ego

depleted state or under conditions of heavy cognitive load, then some form of intervention

that favorably changes the choice context or environment may be in order. Other than

this, it is hard to think why welfare interventions may be desirable for SCH type DMs.

In that sense, our model can stay clear of the tricky debates surrounding paternalistic

interventions that the welfare economics of behavioral decision makers often engenders.

21Refer to Example 1 in Section II of Masatlioglu, Nakajima, and Ozbay (2012) for an example illustrating

this.
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A Appendix

A.1 Proofs in Section 3

A.1.1 Proof of Proposition 3.1

Suppose, towards a contradiction, c does not satisfy WARP. That is, there exists S, T ∈

P(X), x, y ∈ S ∩ T such that c(S) = x and c(T ) = y. Wlog, assume that x ≻∗ y. That

is W≻∗(xy) = {y}. However, since W≻∗(xy) ⊆ W≻∗(T ), this implies y ∈ W≻∗(T ) and

c(T ) 6= y! Next, pick any S and let x̃ ∈ S be s.t. x̃ ≻∗ z, for all z ∈ S \ x̃. This implies

that W≻∗(x̃z) = {z} and c(x̃z) = x̃, for all z ∈ S \ x̃. Since, W≻∗(x̃z) ⊆W≻∗(S), this then

implies that z ∈ W≻∗(S), for all z ∈ S \ x̃ and, hence, S \W≻∗(S) = {x̃}. Accordingly,

c(S) = x̃.

A.1.2 Proof of Proposition 3.2

First, we show that if Pc is acyclic then c satisfies NBC. We do so by proving the con-

trapositive, i.e., c violating NBC implies Pc is not acyclic. The proof is by induction on

the number of alternatives involved in the NBC violation, denote this number by k. First,

consider the case of k = 3. Let c(x1x2) = x1, c(x2x3) = x2, c(x1x3) = x3 and wlog

suppose c(x1x2x3) = x1. In the menu {x1, x2, x3}, c(x1x2x3) = x1 and since c(x1x3) = x3,

we have x1Pcx3. Now w.r.t. the menu {x1, x3}, note that {x1, x2, x3} ∈ T{x1,x3} since

c(x2x3) = x2. Further, c(x1x3) = x3 and c(x1x2x3) = x1 together imply that x3Pcx1.

Hence, Pc is not acyclic and the desired conclusion follows for k = 3. Now suppose the

result has been proven for k = n − 1. We wish to prove it for k = n. To that end, let

c(x1x2) = x1, c(x2x3) = x2, . . . , c(xn−1xn) = xn−1 and c(x1xn) = xn. Now, either (a)

c(x1x3) = x3 or (b) c(x1x3) = x1. If (a), then c(x1x2) = x1, c(x2x3) = x2, c(x1x3) = x3
and the conclusion that Pc is not acyclic follows from the case of k = 3. If (b), then

c(x1x3) = x1, c(x3x4) = x3, . . . , c(xn−1xn) = xn−1 and c(x1xn) = xn. This is a violation

of NBC with n− 1 alternatives and the conclusion that Pc is not acyclic follows from the

case of k = n− 1.

Next, we show that if Pc is acyclic then c satisfies NC; or equivalently, if c violates NC

then Pc is not acyclic. So assume that for some menu S and x ∈ S, x 6= c(xy) for all

y ∈ S \x and c(S) = x. Consider the menu {x, ŷ} with c(xŷ) = ŷ, for some ŷ ∈ S \x. It is

straightforward to see that S ∈ T{x,ŷ} as c(xy) = y for any y ∈ S \ {x, ŷ}. Since c(S) = x,

it follows that ŷPcx. On the other hand, S ∈ TS, c(S) = x and ŷ = c(xŷ) together imply

that xPcŷ. Hence, Pc is not acyclic.
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A.1.3 Proof of Theorem 3.1

Necessity: Let c : P(X) → X be an SCH with parameters (≻∗,≻, W≻∗) and suppose,

towards a contradiction, Pc is not acyclic. That is, there exists x1, . . . , xn ∈ X with

xiPcxi+1,∀i = 1, . . . , n − 1, and xnPcx1.
22 By the definition of Pc, xiPcxi+1 implies that

there exists Si with xi, xi+1 ∈ Si, xi = c(Si) and for some Ti ∈ TSi
, xi+1 = c(Ti) or

xi+1 = c({c(Ti), xi+1}). This implies that xi+1 /∈ W≻∗(Ti). Further, Ti ∈ TSi
implies that

the ≻∗-worst alternative of Ti is the same as that of Si. Accordingly, since W≻∗ is quasi-

monotonic, it follows that W≻∗(Si) ⊆W≻∗(Ti) and xi+1 /∈W≻∗(Si). Therefore, xi = c(Si)

and xi+1 ∈ Si \W≻∗(Si) allows us to conclude that xi ≻ xi+1, for i = 1, . . . , n−1. Further,

since ≻ is transitive, we have x1 ≻ xn. At the same time, by a similar argument as the

one above, xnPcx1 implies that xn ≻ x1, which brings us to our desired contradiction.

Sufficiency: Let c : P(X) → X be such that Pc is acyclic. We show below that we

can identify strict preference rankings ≻∗ and ≻ on X and a should not set mapping

W≻∗ : P∗(X) → P(X) that is quasi-monotonic such that with respect to the ordered pair

(≻∗,≻) and the mapping W≻∗ , c is an SCH.

Define ≻∗ ⊆ X ×X as follows: for any x, y ∈ X, x 6= y, x ≻∗ y if x = c(xy). We establish

that ≻∗ is a strict preference ranking, i.e., ≻∗ is:

Total : c(xy) 6= ∅, for all x, y ∈ X, x 6= y. Thus, either x ≻∗ y or y ≻∗ x.

Asymmetric : Suppose, towards a contradiction, x ≻∗ y and y ≻∗ x. Then by definition,

x = c(xy) and y = c(xy)!

Transitive : Let x ≻∗ y and y ≻∗ z. This implies x = c(xy) and y = c(yz). Since Pc is

acyclic, it follows from Proposition 3.2 that c satisfies NBC. Accordingly, x = c(xz), i.e.,

x ≻∗ z.

Next, to define the preference ranking ≻ ⊆ X ×X, start with the binary relation Pc. Let

P ∗
c be the transitive closure of Pc. Since Pc is acyclic, it follows that P

∗
c is a partial order.

By Szpilrajn’s theorem, we know that this partial order can be extended to a linear order.

We define ≻ as the asymmetric component of this linear order.

To define the should not set mapping, first, define for any S ∈ P∗(X), the set:

D(c(S)) = {x ∈ S : c({c(S), x}) = c(S)}

Now, define the should not set mapping W≻∗ : P∗(X) → P(X) by:

W≻∗(S) =
⋂

T∈TS

D(c(T ))

To establish that this is a well defined should not set mapping, first, note that for any

S ∈ P∗(X), c(S) /∈ D(c(S)) and, accordingly, c(S) /∈ W≻∗(S). Hence W≻∗(S) ( S.

22Wlog, we can take x1, . . . , xn to be distinct since if they are not, we can construct a smaller cycle with

distinct elements.
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Next, note that since c satisfies NBC, for any such menu S, there exists xS such that

c(xxS) = x for all x ∈ S \ xS . Moreover, from Proposition 3.2 we know that since Pc is

acyclic, c satisfies NC as well. Hence, c(S) 6= xS . That is, xS ∈ D(c(S)) 6= ∅. By a similar

argument, D(c(T )) 6= ∅ for all T ∈ TS, T 6= S. Further, for any such T and z ∈ T \S, there

exists x′ ∈ S s.t. c(zx′) = z. Either, x′ = xS ; or c(x
′xS) = x′, in which case too, by virtue

of NBC, we have c(zxS) = z. In other words, c(xxS) = x for all x ∈ T \ xS . Accordingly,

xS ∈ D(c(T )). Together, these observations establish that xS ∈ W≻∗(S) and, hence,

W≻∗(S) 6= ∅. Finally, consider any x ∈ S \W≻∗(S) and y ∈W≻∗(S). That is, there exists

T̂ ∈ TS such that either (a) c(T̂ ) = x or (b) c({c(T̂ ), x}) = x; and c({c(T̂ ), y}) = c(T̂ ). If

(a), then clearly c(xy) = x. If (b), then too, by NBC, c(xy) = x. Hence, by our definition

of ≻∗, we have x ≻∗ y. This establishes thatW≻∗ is a well defined should not set mapping.

To establish that it is quasi-monotonic, consider any T ⊇ S such that according to the

ranking ≻∗ we have defined, the ≻∗-worst alternative in T is the same as that in S. This

implies that for all z ∈ T \ S, there exists y ∈ S s.t., z ≻∗ y; or, by the definition of ≻∗,

c(yz) = z. In other words, T ∈ TS. Further, it is straightforward to verify that TT ⊆ TS.

Accordingly, W≻∗(S) ⊆W≻∗(T ).

To show: (≻∗,≻,W≻∗) is an SCH representation of c.

Pick any menu S ∈ P∗(X) and let x = c(S). First, note that sinceW≻∗(S) =
⋂

T∈TS

D(c(T ))

and x /∈ D(c(S)), it follows that x /∈ W≻∗(S). Now consider y ∈ S, y 6= x, such that

y /∈ W≻∗(S). That is, there exists T̂ ∈ TS s.t., y /∈ D(c(T̂ )). In other words, either

c(T̂ ) = y or c({c(T̂ ), y}) = y. Hence, we have xPcy. Finally, since Pc ⊆ ≻, it follows that

x ≻ y. Therefore, c(S) =M(S \W≻∗(S);≻).

A.1.4 Proof of Proposition 3.4

To show Pr ⊆ P ∗
c : Suppose ¬[xP ∗

c y]. Then, the following two cases are possible: Either

yP ∗
c x or ¬[yP ∗

c x]. Consider the first case and let ≻ be a strict preference ranking represent-

ing the preferences of the want-self in an SCH representation. Since P ∗
c is the transitive

closure of Pc, yP
∗
c x implies that there exists a sequence (zm)Mm=1 in X such that yPcz1,

z1Pcz2, . . . , zMPcx. Further, for any such ≻, since Pc ⊆ ≻ and ≻ is transitive, it follows

that y ≻ x. In the second case, where ¬[yP ∗
c x], there exists no sequence (zm)Mm=1 in X

such that yPcz1, z1Pcz2, . . . , zMPcx. In this case it is possible to extend P ∗
c to a linear

order under whose asymmetric component ≻ we have y ≻ x. The proof of Theorem 3.1

establishes that the asymmetric component of any such linear order can be part of an

SCH representation. Therefore, in either case, x is not revealed to be preferred to y, i.e.,

¬[xPry].

To show P ∗
c ⊆ Pr: As shown above if xP ∗

c y, then for any strict preference ranking ≻
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representing the preferences of the want-self in an SCH representation, we have x ≻ y and,

hence, xPry.

A.2 Proofs in Section 4

A.2.1 Proof of Theorem 4.1

Necessity: Let c : P(X) → X be an SSCH with parameters (≻∗,≻) and suppose, towards

a contradiction, Qc is not acyclic. That is, there exists distinct x1, . . . , xn ∈ X with

xiQcxi+1,∀i = 1, . . . , n − 1 and xnQcx1. xiQcxi+1 implies that for some Si, xi, xi+1 ∈ Si,

xi = c(Si) and ∃ Ti ∈ TSi
, s.t. for some T̂i ⊆ Ti, |T̂i| ≥ 2, xi+1 = c(T̂i). This implies

that xi+1 6=M(T̂i;≻
∗) and, accordingly, xi+1 6=M(Ti;≻

∗). Further, Ti ∈ TSi
implies that

the ≻∗-worst alternatives of Si and Ti are the same. Hence, xi+1 6= M(Si;≻
∗). Since

xi = c(Si), this allows us to conclude that xi ≻ xi+1, for i = 1, . . . , n− 1. Further, since ≻

is transitive, we have x1 ≻ xn. At the same time, by a similar argument as the one above,

xnPcx1 implies that xn ≻ x1, which brings us to our desired contradiction.

Sufficiency: Let c : P(X) → X be such that Qc is acyclic. We show below that we can

identify strict preference rankings ≻∗ and ≻ on X such that with respect to the ordered

pair (≻∗,≻), c is an SSCH. To that end, first, note that since Pc ⊆ Qc, if Qc is acyclic,

then it implies that Pc is acyclic. Accordingly, by Proposition 3.2, it follows that c satisfies

NBC and NC.

Define ≻∗ ⊆ X ×X like in the proof of Theorem 3.1 above: for any x, y ∈ X, x 6= y, x ≻∗

y if x = c(xy). As established there, ≻∗ defined thus is a strict preference ranking.

Define ≻ ⊆ X × X as follows: for any x, y ∈ X, x 6= y, x ≻ y if either (i) there exists

S ∈ P(X), |S| > 2, and x, y ∈ S such that x = c(S) and y = c(S′), for some S′ ⊆ S,

|S′| ≥ 2; or (ii) y 6= c(S) for any S ∈ P(X) with |S| ≥ 2. We establish that ≻ is a strict

preference ranking, i.e., ≻ is:

Total : Since X is a finite set and c satisfies NBC, there exists a unique alternative, call

it z, such that c(zz) 6= z for all z ∈ X \ z. Let x, y ∈ X, x 6= y. First, consider the case

x, y 6= z and the set {x, y, z}. Since, x = c(xz) and y = c(yz), by NC, we know that

c(xyz) 6= z. If c(xyz) = x, then x ≻ y; and if c(xyz) = y, then y ≻ x. Next, consider the

case that one of x or y, wlog say y, is z. Accordingly, since c(yz) 6= y, for any z ∈ X \ y,

by NC it follows that there exists no S ∈ P(X) with |S| ≥ 2 such that c(S) = y. Hence,

x ≻ y. This establishes that ≻ is total.

Asymmetric : Suppose x ≻ y. Clearly, x 6= z (defined in the step above). This is because,
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using NC, we know that there exists no S ∈ P(X) with |S| ≥ 2 such that c(S) = z; further

z is the unique such alternative. On the other hand, if y = z, then for the same reason,

¬[y ≻ x]. Now consider the case y 6= z. Then, x ≻ y implies that there exists S ∈ P(X),

|S| > 2 and x, y ∈ S such that x = c(S) and y = c(S′), for some S′ ⊆ S, |S′| ≥ 2. That is,

xQcy. If it were the case that y ≻ x, then we would also have yQcx, which would violate

the acyclicity of Qc. Therefore, ¬[y ≻ x].

Transitive : Let x ≻ y and y ≻ z, for some x, y, z ∈ X. By the argument made above,

x, y 6= z. Further, if z = z, then clearly x ≻ z and our desired conclusion is immediate.

So, assume z 6= z. In that case x ≻ y and y ≻ z imply that xQcy and yQcz, respectively.

Now, consider the menu {x, y, z, z}. By NC, z 6= c(xyzz). Further, z 6= c(xyzz) since,

together with c(yz) = y, this would imply zQcy, violating the acyclicity of Qc. By a similar

argument, y 6= c(xyzz). Hence, c(xyzz) = x and, together with c(zz) = z, it follows that

x ≻ z.

To show: (≻∗,≻) is an SSCH representation of c.

Pick any menu S ∈ P∗(X) and let x = c(S). First, consider the case when |S| = 2,

i.e., S = {x, y} for some y 6= x. In this case, it follows that x ≻∗ y and, therefore,

x = M(S \M(S;≻∗);≻). Next, consider the case |S| > 2. Since c satisfies NC, we know

that there exists z ∈ S, such that, c(xz) = x. This implies x ≻∗ z. Thus, x ∈ S\M (S;≻∗).

Now consider any y ∈ S \M(S;≻∗), y 6= x, i.e, there exists some {y, y′} =: S′ ⊆ S, such

that c(S′) = y. Hence, x ≻ y and x =M(S \M(S;≻∗);≻).

A.2.2 Proof of Proposition 4.1

Let (≻∗,≻) and (≻̃∗, ≻̃) be two SSCH representations of a choice function c. Then, for

any x, y ∈ X, x 6= y,

x ≻∗ y ⇔ x = c(xy) ⇔ x ≻̃∗y

Let z =M(X,≻∗) =M(X, ≻̃∗). Then for any x, y ∈ X, x 6= y, x, y 6= z,

x ≻ y ⇔ x = c(xyz) ⇔ x ≻̃ y

A.2.3 Proof of Proposition 4.2

Necessity: (i) We first show that if Rc is acyclic then c satisfies NBC. We prove the

contrapositive. Suppose c(xixi+1) = xi, for all i = 1, . . . , n − 1 and c(x1xn) = xn. This

implies xiRcxi+1, for all i = 1, . . . , n− 1 and xnRcx1. Hence, Rc is not acyclic.
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(ii) Next we show that if Rc is acyclic then c satisfies NC. Suppose c violates NC, i.e., for

some S ∈ P∗(X), x = c(S) and x 6= c(xy) ∀y ∈ S \ x. Then we have xRcx, a violation of

the acyclicity of Rc.

Sufficiency: Finally, we show that if c satisfies NBC and NC, then Rc is acyclic. Let

x1, . . . , xn ∈ X be such that xiRcxi+1,∀i = 1, . . . , n − 1. First, note that since c satisfies

NC, it must be the case that xi 6= xi+1 and c(xixi+1) = xi, for all i = 1, . . . , n−1. Further,

since c satisfies NBC, it follows that x1, . . . , xn are all distinct and c(x1xn) 6= xn. This

implies that ¬[xnRcx1], establishing that Rc is acyclic.

A.2.4 Proof of Theorem 4.2

Necessity: It is straightforward to verify that if c : P(X) → P(X) is a GSCH, then it

satisfies NBC and NC. Hence, it follows from Proposition 4.2 that Rc is acyclic.

Sufficiency: Let c : P(X) → P(X) be such that Rc is acyclic.

Define ≻∗ ⊆ X × X like in the Proof of Theorem 3.1: for any x, y ∈ X, x 6= y, x ≻∗ y

if x = c(xy). Since we know from Proposition 4.2 that the acyclicity of Rc implies that c

satisfies NBC, it follows that ≻∗ is a strict preference ranking.

Define ≻ ⊆ X ×X as x ≻ y if y ≻∗ x. Clearly ≻ is a strict preference ranking.

Define the should not set mapping W≻∗ : P∗(X) → P(X) by:

W≻∗(S) = D(c(S)) = {y ∈ S : c({c(S), y}) = c(S)}

To show: (≻∗,≻,W≻∗) is a GSCH representation of c.

Consider any S ∈ P∗(X) and let c(S) = x. Since c satisfies NC (from Proposition 4.2),

there exists z ∈ S s.t. c(xz) = x. Accordingly, W≻∗(S) = D(x) 6= ∅. Further, x /∈ D(x).

Hence, W≻∗(S) ( S. Now, consider any y ∈ S \W≻∗(S), y 6= x; i.e., c(xy) = y. This

means y ≻∗ x and, accordingly, x ≻ y. Hence, x =M(S \W≻∗(S);≻).

A.3 Proofs in Section 5

A.3.1 Proof of Proposition 5.1

The following example shows that an SCH may violate weak WARP. Consider X =

{x, y, z, w} and the choice function c specified in the table.
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xy xz xw yz yw zw xyz xyw xzw yzw xyzw

c(.) x x x y y z y y x y x

W≻∗(.) y z w z w w z w zw zw yzw

Clearly c violates weak WARP as c(xy) = c(xyzw) = x and c(xyz) = y. It is also

straightforward to verify that with strict preference rankings (≻∗,≻) given by x ≻∗ y ≻∗

z ≻∗ w and y ≻ x ≻ w ≻ z, and quasi-monotonic should not set mapping W≻∗ : P∗(X) →

P(X) specified in the table, c is an SCH.

Next we show that an SSCH satisfies weak WARP. Let (≻∗,≻) be an SSCH representation

of the choice function c. Further, let {x, y} ⊆ S ⊆ T and x = c(xy) = c(T ). x = c(xy)

implies that x ≻∗ y. There are two possibilities. (i) If y =M(S,≻∗), then clearly y 6= c(S).

(ii) If y 6= M(S,≻∗), then y 6= M(T,≻∗) and x ≻ y. Therefore, if y 6= M(S,≻∗), then

x 6=M(S,≻∗) and y 6= c(S).

A.3.2 Comparison with Two-stage chooser

Example A.1. (A TSC but not an SCH). Let X = {x, y, z, w} and consider the choice

function c specified in the table.

xy xz xw yz yw zw xyz xyw xzw yzw xyzw

c(.) y x x y y w y x x y x

It is straightforward to verify that c is a TSC with the following preference rankings:

x ≻1 w ≻1 y ≻1 z, y ≻2 x ≻2 w ≻2 z. However, c is not an SCH. To establish this,

assume otherwise. Then choices over the binaries imply that the preferences of the DM’s

should-self are: y ≻∗ x ≻∗ w ≻∗ z. Further, c(xyw) = x implies that x ≻ y. This is turn

implies that, since c(xyz) = y, W≻∗(xyz) = {x, z}. But then quasi-monotonicity of the

should not set mapping implies that {x, z} ⊆W≻∗(xyzw) and, accordingly, c(xyzw) 6= x!

Example A.2. (An SCH but not a TSC). Let X = {x, y, z, w, v} and consider the choice

function specified in the table below.

xy xz xw xv yz yw yv zw zv wv xyz xyw xyv

c(.) x x x x y y y z v v y y y

xzw xzv xwv yzw yzv ywv zwv xyzw xyzv xywv xzwv yzwv xyzwv

c(.) x x x y y y v y y y x y y

It is straightforward to verify that c is an SSCH (and hence an SCH) with (≻∗,≻) given
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by: x ≻∗ y ≻∗ v ≻∗ z ≻∗ w and y ≻ x ≻ v ≻ w ≻ z. To see that it is not a TSC, suppose

otherwise—say it is a TSC with first stage and second stage preference rankings denoted

by ≻1 and ≻2, respectively. Then, from choices over binaries, it follows that ≻2 is given

by: x ≻2 y ≻2 v ≻2 z ≻2 w. Now consider the sets {x, y, z}, {x, y, w} and {x, z, w, v}.

Since y = c(xyz) = c(xyw) and x ≻2 y, it must be that x gets eliminated in the first round

in both these sets, i.e., y ≻1 x, z ≻1 x and w ≻1 x. But then x gets eliminated in the first

round in {x, z, w, v} and hence c(xzwv) 6= x!

A.3.3 Proof of Proposition 5.2

First we show that an SSCH satisfies WARP(LA) and hence is a CLA. To do so, we draw

on Lemma 1 in Masatlioglu, Nakajima, and Ozbay (2012) that establishes that a choice

function c satisfies WARP(LA) iff the binary relation P̃ on X defined below is acyclic:

xP̃y if there exists S ∈ P(X), s.t., x = c(S) 6= c(S \ y)

Let c be an SSCH and consider x1, . . . , xn ∈ X, s.t., xiP̃ xi+1, for i = 1, . . . n− 1. xiP̃ xi+1

implies that there exists Si ∈ P(X), s.t., xi = c(Si) 6= c(Si\xi+1). This implies xi ≻
∗ xi+1,

for all i = 1, . . . , n−1. Since ≻∗ is transitive, x1 ≻
∗ xn. This means there does not exist S

s.t., xn = c(S) and c(S) 6= c(S \ x1) for this would imply that xn ≻∗ x1. Thus, ¬[xnP̃ x1]

and, hence, P̃ is acyclic. This establishes that c satisfies WARP(LA) and hence is a CLA.

Next, to establish that an SCH may not satisfy WARP(LA), consider the choice function

c on X = {x, y, z, w, v} specified in the table below.

xy xz xw xv yz yw yv zw zv wv xyz xyw xyv

c(.) y x w x y w y w z w x y x

W≻∗(.) x z x v z y v z v v z x v

xzw xzv xwv yzw yzv ywv zwv xyzw xyzv xywv xzwv yzwv xyzwv

c(.) x x x y z y z y x y x y w

W≻∗(.) z zv v z v v v xz zv xv zv zv xyzv

For this choice function c, consider the binary relation P̃ defined above. Observe that it

has a cycle: yP̃w as y = c(xywv) and x = c(xyv). Also, wP̃y as w = c(xyzwv) and

x = c(xzwv). Hence, c violates WARP(LA) and is not a CLA. However, c is an SCH

with the quasi-monotonic should not set mapping W≻∗ : P∗(X) → P(X) specified in

the table and strict preference rankings (≻∗,≻) given by: w ≻∗ y ≻∗ x ≻∗ z ≻∗ v and

x ≻ z ≻ y ≻ w ≻ v.
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A.3.4 Comparison with CAF model

Example A.3. (An SCH but not a CAF). Let X = {x, y, z}. There are two attributes

and the attribute ranking is as follows: y1 > z1 > x1 and x2 > y2 > z2.

xy xz yz xyz

c(.) y x y x

To see that the choice function c specified in the table is not a CAF, refer to Kimya (2018)

Section II.C. However this choice function is an SSCH (and hence an SCH) with preference

rankings ≻∗ and ≻ given by y ≻∗ x ≻∗ z and x ≻ y ≻ z.
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