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Abstract

Two alternatives P and Q are in contention. There are two states and each state
identi�es a location of P and Q on the unidimensional policy space. Voters have noisy
information about the state. We provide a characterization of limit equilibrium out-
comes as the electorate increases unboundedly. If P lies on the same side of Q in both
states, then information aggregation is guaranteed. If P is to the right of Q in one
state and to the left of Q in the other, then there are three distinct equilibrium se-
quences, only one of which is full information equivalent. This shows how distributional
uncertainty leads to failure of information aggregation.

1 Introduction

Voters have noisy information about candidates and their policies. Can elections solve this
informational problem and select the true majority preferred alternative? The celebrated
Condorcet Jury Theorem (Condorcet (1785)), henceforth CJT, asserts that if all voters
have the same preference, the electoral outcome under majority rule indeed corresponds
to the best alternative. According to the CJT, elections are full information equivalent in
the sense that the outcome corresponding to the aggregate of all private information in the
electorate is selected (Austen-Smith and Banks (1996), Feddersen and Pesendorfer (1997),
Myerson (1998), Wit (1998), Duggan and Martinelli (2001), Meirowitz (2002)), Barelli et
al (2020)). But in the real world, voters may disagree on their preferred alternatives even
when they have the same information. In this paper, we examine if the CJT holds in the
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unidimentional spatial model (Downs, 1957), which is the standard model for analysing
political competition with voters having diverse preferences.

In our model, voters have single-peaked preferences with their "ideal points" distributed
on the left-right continuum which is taken to be the unit interval. The alternatives in
contention (candidates or policies) are located as points on this policy space. We consider
two alternatives A 2 fP;Qg and there is uncertainty regarding the exact location of these
alternatives. A binary state variable ! 2 fL;Rg captures such uncertainty: the location
of policy A in state ! is xA! 2 (0; 1): In words, P and Q are located either at (xPL ; x

Q
L ) -

state L or at (xPR; x
Q
R) - state R: We also assume that L is the "left state" and R is the

"right state" in the sense that xPL < x
P
R and x

Q
L < x

Q
R: Voters obtain noisy private sigmals

regarding the state. In this environment, we ask if the electoral outcome coincides with
the majority-preferred alternative under common knowledge of the state.

Our main result is that the property of Full Information Equivalence (henceforth, FIE)
depends only on whether there is uncertainty in the locational order of alternatives. To
explain this, suppose that xP! < x

Q
! for ! 2 fL;Rg: Here, P is known to lie to the left of

Q in both states despite the uncertainty about their speci�c locations. We refer to this
as the ordered alternatives environment. In such environments, all state-sensitive voters
have the same ranking over alternatives, much like the canonical jury settings. The ex-post
majority preferred alternative is guaranteed to be elected in this environment.

In contrast, suppose that xPL < xQL < xQR < xQR: Here, P lies to the left of Q in state
L but to the right of Q in state R: These settings - referred to as unordered alternatives
environments - have two related features. First, there are two groups of state-sensitive
voters with opposed preferences. Voters su¢ ciently to the right prefer P in state R and
Q in state L; while the voters beyond a threshold in the left have opposite rankings in
each state. Second, due to the two-state structure, there is a central alternative (Q in
this case) in the sense that both its possible locations are �anked on two sides by the two
possible locations of the rival alternative. Q has a "lower risk exposure" in the sense that
for every voter, a change in state induces a larger change in utility from Q than for P: The
alternative P receives votes from the relevant group only if the common belief indicates the
corresponding state su¢ ciently strongly. The altertantive Q, on the other hand, has the
advantage of being preferred by most voters for moderate beliefs and by moderate voters
for most beliefs. Of course, beliefs are determined endogenously in equilibrium.

We look at sequences of type-symmetric Nash equilibria of the voting game as the num-
ber of voters grows unboundedly and compare the limit outcome with the full information
outcome. The contribution in our work is to characterize the full set of equilibria (in the
limit). There are essentially three equilibrium sequences for the unordered alternatives
environment - information is aggregated in one of these. In the two others, the "centrally
located alternative" wins in both states irrespective of whether it is majority preferred or
not. Our results do not depend on the particular threshold voting rule, prior likelihoods
of the states, the distribution of voter preferences, the size of voter groups with interest
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con�ict or the extent of noise in private information.

According to our result, in an election between two candidates P and Q; CJT holds as
long as it is known that P lies to the left (or right) of Q; even if their precise policy positions
are uncertain. However, if one or both candidates are running on an platform of e¢ ciency
or of populism, it may be unclear whether the leftist or the rightist voters have a higher
bene�t from P relative to Q. A similar situation may arise if a lesser known challenger
faces an incumbent and there is a "large" uncertainty about the challenger�s ideological
position relative to that of the incumbent. Later in this paper we discuss some empirical
evidence that voters are often not able to order candidates correctly along salient issue
dimensions. In these situations, the majority preferred candidate may lose the election.

State-contingent preference con�ict often arises in settings of distributive politics when
there is uncertainty about the outcome of a policy, translating into uncertainty over the
identity of who gains and who loses from a policy change. This phenomenon is usually
termed as distributional uncertainty (Gersbach 2000, Ali, Siga and Mihm 2018). Consider
the example of a vote over trade liberalization adapted from Fernandez and Rodrik (1991).
This could be an election where the major issue is trade reforms, or an actual referendum
over joining (or leaving) an economic union with other countries as had happened in the
United Kingdom in 2016. If the country has a two-sector economy, trade liberalization
would cause the sector with comparative advantage to grow and the other to shrink. If
there is an uncertainty about which sector the comparative advantage lies in, we have
con�icting preferences between the two sectors. In other words, if it is uncertain whether
the proposed trade reform will make voters employed in industry better o¤ at the cost of
those in agriculture or the other way round, the reform may be blocked even when ex-post
it is actually favoured by the majority.

Such a situation can also arise when communities vote over �nancing lumpy public
investments which bene�t speci�c groups disproportionately. Suppose a city with two
districts is voting to raise taxes to build a school, but the location of the school is not
yet determined. Residents of the district where the school is �nally located will gain in
the net, while residents of the other district will lose from this increase in taxes. This is
another situation where there are two groups with opposed preference in each state, and
the project may get stalled.

This is not the �rst paper pointing out that information aggregation may be impeded if
there are voter groups with opposed preferences (Kim and Fey (2008), Gersbach (1995), Ali,
Mihm and Siga (2018)). Bhattacharya (2013) provides general conditions on co-monotonity
between preferences and information for the existence of an ine¢ cient equilibrium. While
our environment is a special case of Bhattacharya (2013), the additional spatial structure
allows us to characterize the entire set of limit equilibria. More importantly, the current
paper tracks the behavior of swing voters and demonstrates why the minority preferred
alternative may carry the election. Our message is that for an important class of threshold
rules (those that induce di¤erent outcomes in di¤erent states under full information), e¢ -
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cient and ine¢ cient equilibria co-exist. Thus, we view the fundamental problem in elections
as endemic co-ordination uncertainty.

1.1 Structure of Equilibria

We assume that each voter takes into account the fact that his choice matters only when
the others�votes are tied, and conditions his voting decision on this event (Austen-Smith
and Banks 1996). Therefore, each equilibrum is characterized by a commonly shared belief
� over states (� = Pr(! = R)) such that (i) equilibrium strategy is individually optimal
with respect to belief � and (ii) given that others are using the equilibrium strategy, the
commonly inferred distribution over states conditioning on a tie is �: Since this belief acts
like a common prior but is induced in equilibrium, we call it the "induced prior belief". In
this paper, we identify the set of limit values of induced priors using a technique developed
in Bhattacharya (2013). We employ a two-step procedure. First, we identify the expected
vote share in each state as a function of the exogenous prior. Then we determine which
values of the prior induce the same belief conditioning on a tie (as the electorate grows
unboundedly). In other words, the exercise is that of �nding the (limit of) �xed points
in the space of beliefs. While we apply this methodology to the unidimensional spatial
model, the same method can be used to �nd the set of equilibria for a much wider variety
of environments.

Denote by t(!; �) the expected vote share for P in state ! 2 fL;Rg: This is obtained by
considering the optimal decision of each type given belief �; and then integrating over types.
The main part of our characterization is the following result: Any belief � 2 (0; 1) is a limit
induced prior if and only it produces equal pivot probabilities in each state. For � = f0; 1g;
this condition is necessary but not su¢ cient. To see why this is necessary, observe that
if for some � the pivot probability in one state is larger, then all belief conditional on
pivotality tends to be concentrated on that state as the electorate grows, implying that
the corresponding � cannot be a �xed point.1 This condition allows us to pin down limit
values of the induced prior from the shape of the functions t(!; �) in each environment.

For instance, consider the simple majority rule � = 1
2 . Equality of pivot probability

holds if t(L; �) and t(R; �) are equidistant from 1
2 ; for which we need either t(L; �) +

t(R; �) = 1 or t(L; �) = t(R; �): Finding equilibria boils down to checking beliefs which
satisfy one of these two conditions. To complete the characterization of equilibria, we also
have to check if � = 0 or � = 1 are �xed points (in the limit).

Consider the ordered alternatives case where P is known to lie to the left of Q (say,
xPL < xPR < xQL < xQR): In this environment, there is an interval [xL; xR] of independent
types that prefer P in state R and Q in state L. Optimal behavior under uncertainty
(given belief �) has the following structure: there is a responsive interval of types (subset
of independents) vote P on r-signal and Q on l-signal, while those to the left (right) of the
responsive set vote P (Q) for both signals. As � increases, more independents switch to P;

1Su¢ ciency of this result is proved constructively.
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so the function t(!; �) is increasing in both states ! 2 fL;Rg. Also, t(L; �) < t(R; �) for
all � 2 (0; 1) due to informative voting by responsive voters. As a result, there is a unique
equilibrium induced prior �0 satisfying t(R; �0)+ t(R; �0) = 1: Since t(L; �0) < 1

2 < t(R; �
0);

by the Law of Large numbers, P gets the majority in state R and Q in state L: This is also
the full information equivalent outcome provided that there are enough independent voters.
In this equilibrium, the responsive set of voters contains the median type. The description
of moderate swing voters driving election results is consonant with the standard description
of electoral behavior by journalists, academics and electoral commentators (see for example,
The Swing Voter in the American Politics (2008), ed. William G. Mayer). However, when
the alternatives are not ordered, voting behavior may not conform to this description.

Consider now an environment with xPL < xQL < xQR < xPR: Here, there are two groups
of state-senstive voters: a set of types [0; xL] - the L-group, prefer P in state L and Q in
state R; while a set [xR; 1] - the R-group have the exact opposite preference. The types in
[xL; xR] are Q-partisans. Assuming that the R-group consists of more than 50% voters, a
majority prefers P in state R and Q in state L under full information. In this setting, P
receives more votes either when the belief strongly indicates state L (low �) and most of
the L-group votes for P or when � is very high and most of the R-group votes P: Thus, the
vote share functions t(L; �) and t(R; �) are both U -shaped. Moreover, t(L; �) and t(R; �)
cross exactly once at ��: For lower beliefs the responsive voters are predominantly in the
L-group and hence t(L; �) > t(R; �) and for � > ��; responsive voters are predominantly
in the R-group implying t(L; �) < t(R; �): Such shape of vote share functions leads to three
�xed points in the space of beliefs (in the limit).

Observe that the median voter lies in the R-group. There is one equilibrium where
the responsive set contains the median voter the full information outcome obtains almost
surely in the limit.

There are two other equilibria in which Q is elected in both states. One such equilibrium
occurs at ��; the intersection of vote share functions. Since t(L; ��) = t(R; ��) < 1

2 ; Q
wins in both states almost surely. In this equilibrium, only the extremists at either end of
the ideological spectrum are responsive to information. Since pivotality does not strongly
indicate one state or the other, moderate voters in both groups vote for Q. We call this
the activist voting equilibrium since only the types who have the largest utility di¤erence
between the alternatives vote for P , provided their signal suggests accordingly. To an
outside observer, this voting behavior appears to be one where P is supported by a coalition
of some voters from the far right and some from the far left.

Another equilibrium occurs with � converging to 0: Independent of their private infor-
mation, everyone in the R-group votes for Q and almost everyone in the L-group votes for
P . Since the size of L-group is less than 50%, P obtains too few votes in either state. With
a vanishing fraction of voters in the L-group voting according to their signal, a tie (while
itself very rare) is much more likely when these voters vote for P , i.e., when the state is
0: Since all voters condition their vote on this very event, almost everyone votes as if the
state is known to be L. We describe this equilibrium as a block voting equilibrium, with
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opposed groups voting for opposite alternatives.
Finally, one might wonder if there is also an equilibrium with � approaching 1; where all

R-voters vote for P . But this cannot be a limit value of equilibrium beliefs: for a sequence
�n approaching 1; t(R; �n) > t(L; �n) > 50% along the sequence, making a tie far more
likely in state ! = L:2

In the main section of the paper we consider only consequential rules. These are
threshold voting rules with the property that under full information, P wins in one state
and Q in another. With such rules, whether information is aggregated or not depends
on equilibrium selection. In section 6, we consider all non-unanimous threshold rules and
show that for a continuum of voting rules, there exists no equilibrium that aggregates
information. In particular, these are rules for which P should win in both states under full
information, but in each equilibrium Q wins almost surely in at least one state. We believe
that this strong failure of information aggregation is of independent theoretical interest.

1.2 Applications

Our results suggest that in an environment where there is uncertainty about the identity
about winners and losers from a change of alternatives, information may not be aggregated
in elections (or large committees). We have already suggested a few environments which
are subject to such distributional uncertainty. In this section, we elaborate on a few more.

An important class of applications arise if we consider that there is uncertainty about
only one of the two alternatives. If xQL = x

Q
R = x

Q; then we can think of the alternative Q
as the status quo with known location, while P is a policy proposal that is put to electoral
test against the status quo. There is a large literature in both economics and political
science that equates policymaking with experimentation, making the point that choosing
or electing a policy is rarely the same as ascertaining an outcome.3 Our result suggests
that when the policy under consideration creates distributional uncertainty, the elections
have a status quo bias.

A direct application of our framework is in referenda, which are by de�nition single
issue elections. In fact, some proponents of direct democracy invoke the Condorcet Jury
Theorem in order to suggest that referenda aggregate information e¢ ciently even if voters
may be mistaken about the policy consequences (Matsusaka 2005, Lupia 2001).4 This
paper points out that the argument hinges on the nature of the issue on ballot. If it is an
ideological issue like gay marriage or abortion, we are typically in the ordered alternatives

2With similar reasoning, in the ordered alternatives environment with majority rule we can rule out
equilibrium beliefs approaching either 0 or 1:

3See Lindblom (1959) for an early enunciation of the idea of policymakers �muddling through�policies
in search of good outcomes. A more recent example is Callander (2011).

4For example, Matsusaka (2005, p. 193) claims that �Direct democracy can be e¤ective even when voters
have no more or even worse information than legislators....aggregating the opinions of a million voters can
be highly accurate by the Law of Large numbers even if each person�s chance of being right is small (this
is a version of Condorcet Jury Theorem..)�
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case: it is clear whether the proposal is to the right or left of the status quo. However, if
the issue on the anvil is distributional, i.e., trade or immigration reform, we are more likely
to be in the unordered alternatives environment and the reform is no longer guaranteed to
pass even if it is favored by the majority of citizens.

An instance of a referendum that would possibly �t our framework would be the
�Brexit� referendum in the United Kingdom in June 2016. In an environment where
trade continues to induce sweeping and unpredictable changes to the economy, prevention
of trade retains the current and familiar economic structure. One would expect a bias
towards autarky in such cases. The same idea can be applied to elections where a central
issue is trade and immigration. Donald Trump�s success based on his vehement anti-trade
position in the American Presidential election of 2016 and good showing in the 2020 elec-
tions ba­ ing all pre-poll predictions is consistent with the autarky bias predicted by our
model.

In fact, there is some evidence that in case of referenda over trade or immigration
reforms, the pattern of coalitions are indeed like the activist voting equilibrium that we
identify. Johnston et al (1996) (see page 13 and references therein) argues that in various
countries, the referendum to ratify the Maastricht Treaty (i.e., joining the European Union)
was opposed by a coalition of the far left and far right. Among these countries, while the
measure failed in Switzerland (1992), Norway (1994) and Denmark (1992 and 1994), it
passed by a narrow majority in France (1992).

Status quo bias in referenda have been well documented in empirical work. In general,
the details of the referendum process and the rules for passage vary, making comparison
across countries or aggregation over instances di¢ cult. In Australia, all amendments to
the constitution are required to be passed via referenda in which voting is compulsory for
everyone on the electoral roll. As of date, of the 44 proposals put forth for referendum in
Australia, only 8 have passed. In Switzerland, the �gold standard� for direct democracy,
only 36% of all optional referenda have passed in the period from 1991 till 2006, and
authors have held direct democracy responsible for its slow growth during the nineties,
delays in reforms and so on (Kirchgassner 2007, 2008). In the United States, the success
rate of statewide ballot initiatives from 1904 till 2019 is about 41% 5, We provide a simple
theoretical model to explain a less-than 50% success rate in terms of co-ordination failure
among voter groups.

While we use the metaphor of referenda, the current paper applies to political races
between two candidates or parties to the extent they can be reducible to a single, possibly
ideological dimension. In case of high pro�le national elections, we often know which
candidate is to the right and which one is to the left simply from their party identities.
However, in may other situations voters are faced with an uncertainty over the order of the
alternatives. In primaries where both candidates are from the same party, the left-right

5Of 2610 initiatives put on ballot since the �rst one in Oregon in July 1904, only 1080 have passed.
Source: Historical database maintained by the Initiative and Referendum Institute at the University of
Southern California (http://www.iandrinstitute.org/data.htm)
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order of candidates may not be clear. In local or municipal elections, candidates often run
on the plank of e¢ ciency or local issues, making it di¢ cult for voters to use party a¢ liation
as an informational shortcut for candidate positions.

Even when the candidates do take clearly de�ned issue positions, there is substantial
evidence to the e¤ect that voters often fail to learn the positions or, worse still, fail to even
identify the order of the candidates according to their positions. Bartels (1986) �nds wide
variation in voter perceptions of candidate positions on several salient issue dimensions in
the 1980 US Presidential elections from the NES data. Lenz (2012, table 5.1, page 117-
118) presents a survey where he studies several salient issues in US and European national
elections (social security in 2000 US elections, EU integration in the British 1997 elections,
public works jobs in the 1976 US elections, defense spending in the 1980 US elections,
ideology in the 1992 US elections and Chernobyl in the 1986 Dutch elections) and shows
that, in each case, less than half of the respondents could start out identifying the order of
candidates correctly. These facts suggest that even in electoral races between candidates,
there may be uncertainty in voters�minds about the order of candidates.

In case of electoral competitions, our results provide a new explanation for the phe-
nomenon of incumbency advantage. It is well documented that incumbents enjoy a strong
and growing advantage in US electorates - both in legislative and executive o¢ ces (An-
solabehere, Snyder and Stewart 2000, Ansolabehere and Snyder 2002). We hold that if
there is incomplete information regarding wether the challenger lies to the left or right of
the incumbent, then incumbency advantage may arise due to a co-ordination failure among
voters. While the existing set of explanations of incumbency advantage relating to political
structure (e.g. decline of the party (Cover 1977), campaign contribution and interest group
activities (Jacobson 1980)) apply to legislative o¢ ces, our explanation applies to executive
o¢ ces as well. In fact, our theory is particularly suited to lower o¢ ces where information
regarding the challenger is harder to come by and party identi�cation plays a smaller role.
Another literature (Erikson 1995, Ansolabehere, Snowberg and Snyder 2006) suggests that
the advantage of the incumbent arises from being able to corner a larger share of television
time both in terms of news coverage as well as campaign advertisements. Our explanation
is broadly in line with this position: the incumbent advantage stems from the voters being
more informed about the incumbent than about the challenger.

1.3 Related literature

Fernandez and Rodrik (1991) was the �rst to show that welfare improving trade reforms
may be blocked due to distributional uncertainty. Their idea is the following: if the reform
passes in the minority preferred state, that information will be revealed following imple-
mentation and then it will be voted down by the majority in another round of election.
On the other hand, if the status quo wins when the reform is actually majority preferred,
the state is never revealed and the population retains the status quo. Thus, unlike our
mechanism, their theory of status quo bias crucially hinges on there being multiple rounds
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of elections and partial revelation of the state in between.
Ali, Mihm and Siga (2018) provide general conditions on the nature of preference

variation that leads to the ex-post welfare-maximizing alternative to be voted down in
some equilibria. However, their mechanism hinges on private signals being very noisy
while ours holds for arbitrarily precise individual information.

It is important to mention the formal relationship between conditions on information
aggregation in the spatial model and those in the more general setting in Bhattacharya
(2013). According to the Strong Preference Monotonicity (SPM) condition in Bhattacharya
(2013), if the distribution of preferences is such that a randomly chosen voter is more likely
to prefer P over Q for each prior belief over states, then information is aggregated in
all equilibria. Conversely, if SPM is not satis�ed, then there exist signal precisions for
which a �wrong� outcome obtains in at least one equilibrium. Bhattacharya (2013) also
identi�es a joint condition on signal precision and preference distribution called Weak
Preference Monotonicity (WPM) that has the same �avor.6 In the spatial model, if the
alternatives are ordered, both SPM and WPM are satis�ed. Hence, it follows directly that
information is aggregated e¢ ciently in every equilibrium. On the other hand, when the
alternatives are unordered, both SPM and WPM are violated. It is important to point
out that the non-aggregating equilibrium identi�ed by Bhattacharya (2013) is the activist
voting equilibrium in the spatial model. The spatial structure allows us to unearth other
equilibria: both e¢ cient and ine¢ cient ones in the same environment. Moreover, the
current paper derives the equilibrium strategies which allows us to track the behavior of
responsive (i.e., �swing�) voters and provide conditions on responsive sets for the election
to achieve the correct outcomes in equilibrium. These conditions throw light on the reasons
for why information may or may not be aggregated in certain equilibria.

There is a parallel literature on aggregation failure in common value elections. Man-
dler (2012) shows that there exist non-aggregating equilibria if there is uncertainty over
precision of signals. Our paper shares with Mandler�s the idea that voting equilibria are
sensitive to local properties of vote share functions (while full information outcomes are
not). Aggregation failure due to multiple equilibria can also occur when the number of
eligible voters varies across states. While Myerson (1998) shows that there always exists an
information aggregating equilibrium, Ekmekci and Lauermann (2019) solve the set of equi-
libria and show that there exist additional non-aggregating equilibria with state-dependent
electorate size. In the common value auctions literature, Atakan and Ekmekci (2014) have
a similar insight where they show that information aggregation may fail in equilibrium if
bidders�expected valuation is non-monotonic in their belief over states.

Persico (2004) and Martinelli (2006) show that in large committees votes may be un-
informative if information is costly. We demonstrate that uninformative voting may arise
(in the block voting equilibrium) due to preference diversity even if signals are free.

6WPM is said to be satis�ed if a change in the signal makes a randomly chosen voter more switch her
vote for P to Q for each belief over states. For a given distribution of preference, SPM holds if and only if
WPM holds for every possible distribution over signals.
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In all the above papers the state space is binary. Barelli et al (2020) shows that even
with common values, with general state and signal spaces there may not exist any feasible
strategy pro�le that aggregates information, and generically so if the state space is in�nite.
While aggregation failure in the papers cited earlier is due to complexity in preferences, the
failure in Barelli et al (2020) is due to complexity in the information structure. Kosterina
(2020) also looks at common value elections with ordered states and provides su¢ cient
conditions on the information structure for the existence of threshold equilibria that fail
to aggregate information.

The paper is organized as follows. Section 2 discusses the basic model. Section 3
discusses optimal voting behavior as a function of prior beliefs over states. Section 4 char-
acterizes the set of equilibrium outcomes and section 5 identi�es information aggregation
properties in large elections for di¤erent environments. Section 6 provides a discussion of
the robustness of the results. Most proofs are relegated to the appendix

2 Model

2.1 Set-up

There is an electorate composed of n + 1 voters who vote over two policies P and Q:
Alternative P wins if the proportion of votes cast in favour of P is equal to or more
than � 2 (0; 1); otherwise Q wins. Policy alternatives are located in the unit interval
[0; 1]: Location of each alternative is uncertain, and varies with the state of the world
! 2 fL;Rg: States are assumed to be equally likely, although that plays no role in the
analysis. The location of policy A 2 fP;Qg in state ! is given by the parameter xA! 2 (0; 1):
We assume that xAL � xAR for A 2 fP;Qg; i.e., in state L; both policies shift left.

We rule out two trivial cases. First, we assume that xP! 6= x
Q
! for ! 2 fL;Rg; i.e., in

each state there is a choice to be made by voters between P and Q: Second, we allow at
most one alternative to have the same location in both states (otherwise, there will be no
uncertainty).

There are four possible orderings of the policy-state locations: (1) xPL � xPR < x
Q
L � x

Q
R;

(2) xQL � x
Q
R < x

P
L � xPR; (3) xPL < x

Q
L � x

Q
R < x

P
R; and (4) x

Q
L < x

P
L � xPR < x

Q
R; with the

added restriction that only one of the two inequalities in (1) and (2) can be weak. Notice
now that in (1), P is located to the left of Q in both states and in (2) P is located to
the left of Q in both states. In other words, the alternatives are locationally ordered: even
though the exact location is uncertain, it is known that P lies on one side of Q: On the
other hand, in (3), P is located to the left of Q in state L and to the right of Q in state R:
Alternatively, despite locational uncertainty, Q is known to be the central alternative and
is �anked by the two possible locations of P on either side. Environment (4) is similar to
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(3), with the roles of the alternatives reversed. With no loss of generality, we can restrict
our attention to the environments (1) and (3).

De�nition 1 Denote case with xPL � xPR < x
Q
L � x

Q
R (with at most one equality allowed)

as the ordered alternatives environment. In this case, P lies to the left of Q in both states.
Denote the case with xPL < xQL � xQR < xPR as the unordered alternatives environment.
Here, P lies to the left of Q in state L and to the right of Q in state R:

Observe that this formulation allows the special case where a reform with uncertain
consequence is competing against a known status quo. This would be the case where
xQL = x

Q
R = x

Q:

In either environment, each voter receives a noisy private signal s 2 fl; rg drawn inde-
pendently from the following distribution conditional on the state

Pr(lj! = L) = Pr(rj! = R) = q 2
�
1

2
; 1

�
We will refer to q as the signal precision.

Voters have single peaked preference symmetric about the peak. Every individual has a
privately known bliss point x that is drawn independently from a non-atomic distribution
F (�) with support [0; 1]: We assume there is a continuous density function f(�) for which
there is some � > 1 such that 1

� < f(x) < � for all x 2 [0; 1]: Both the realized ideal
point x and realized signal s are private information to the particular voter. Henceforth,
for convenience of description, by the term "type" we shall refer only to the ideal point x:
The utility for a voter with type x 2 [0; 1] from an alternative located y 2 [0; 1] is given
by the continuous loss function �v(z); where z = jx� yj and v(0) = 0 and for all z > 0;
v > 0 and v0 > 0:

We de�ne a voting environment by the tuple (F; q; fxA!g): A voting game is a voting
environment coupled with an electorate size n and a voting rule �:

In terms of voter preference, what matters is the utility di¤erence V (x; !) between the
two alternatives P and Q in state ! for an agent with ideal point x, where

V (x; !) � v(jx� xQ! j)� v(jx� xP! j)

Denote, for ! 2 (L;R); x! = xP!+x
Q
!

2 : This is the threshold indi¤erent type that splits
the type space [0; 1] into the types who prefer P and those who prefer Q: By assumption,
xL < xR:

The classi�cation of environments with those with ordered alternatives and those with
unordered alternatives is crucial. In the ordered alternatives environment, xP! < xQ! ; or
V (x; !) is decreasing in x in both states. In this scenario, the types x < xL prefer P to Q
in each state (P-partisans) and the types x > xR prefer Q to P in each state (Q-partisans).
Types x 2 (xL; xR) are independents: they prefer Q in state L and P in state R:

11



In the unordered alternatives environment, xPL < xQL and x
P
R > xQR; or V (�; !) is de-

creasing in state L and increasing in state R: In this scenario, an interval of moderate types
x 2 (xL; xR) are Q-partisans. There are two groups of independents: The types x < xL
prefer P to Q in state L and Q to P in state R and will be referred to as the L-group,
while those with x > xL have exactly opposite preference in each state and will be referred
to as the R-group.

For the unordered alternatives environment only, we make two more assumptions.
These assumptions are not necessary for the results on ordered alternatives environments.

A1 The loss function v(z) is convex and v0 is log-concave. Formally, v00 < 0 and v00

v0 is
decreasing for all z > 0:

A2 Signal precision q is greater than bq � �1 +qv(xL)v(1�xR)
v(xR)v(1�xL)

��1
Assumption A1 says that the loss increases at a faster rate as the policy moves further

away, but the rate of increase is not "too fast". This assumption delivers an important
monotonicity property for the function �V (x;R)

V (x;L) ; making cut-o¤ strategies optimal for the
unordered alternatives environment.

Assumption A2 places a lower bound on signal precision. This is necessary to avoid
trivial equilibria where everyone votes for Q. It is important to note that this assumption
stacks the deck against negative results.

The loss function v(z) = z�; � > 1 satis�es A1. In particular, if we have quadratic loss
functions (� = 2), then V is linear in x; i.e., V (x; !) = (x�x!)b!; where b! = 2(xP! �x

Q
! ).

Figure 1 shows the voter preferences separately for ordered and unordered alternatives
environments, assuming a linear V:

Figure 1
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2.2 Strategies and equilibrium - De�nition

A strategy in the game (F; q; fxA!g; n; �) is a probability �(x; s) of voting for P; for each
x 2 [0; 1] and s 2 fl; rg: Since F is nonatomic, we can consider only pure strategies �(x; s) 2
f0; 1g:We consider Bayesian Nash equilibria with two additional restrictions on equilibrium
strategy pro�les: (i) type-symmetry, i.e., agents with the same private information (x; s)
use the same strategy, and (ii) responsiveness, i.e., each action fP;Qg should be played
with positive ex-ante probability in equilibrium.

To obtain a formal de�nition of responsiveness, de�ne by zs the probability that a voter
with signal s votes for P: We have

zs =

Z 1

0
�(x; s)f(x)dx (1)

A pure strategy � is said to be responsive unless zl = zs = 1 or zl = zs = 0:
Recall that a voter conditions her strategy on the event of being decisive. Suppose that,

conditioning on being pivotal, a voter holds the belief that Pr(! = Rjpiv) = �. Denote the
posterior belief obtained from � given signal s 2 fl; rg by �s:7

We say that a strategy � is optimal with respect to prior belief � if for each x 2 [0; 1]
and s 2 fl; rg; she votes for P if and only if8

EV (xj�s) = V (x;R)�s + V (x; L)(1� �s) � 0; (2)

and we denote this optimal strategy by �[�]:
A symmetric Bayesian Nash equilibrium is de�ned as a strategy pro�le �e(�; �) with

the property that it induces a such a belief �e conditioning on pivotality that the strategy
optimal with respect to the belief �e is the same strategy �e: More succintly,

�e = �[�e] and �e = Pr(! = Rjpiv; �e) (3)

where Pr(! = Rjpiv; �e) is the belief induced by the pivotal event given that all other
voters are using strategy �e:

Our equilibrium condition is therefore a �xed point in the space of beliefs, given by any
solution �e to the equation

� = Pr(! = Rjpiv; �[�]) (4)

The set of �xed points of � ! Pr(! = Rjpiv; �[�]) correspond to the entire set of responsive
type-symmetric BNE provided the following properties hold:

Property R For any � 2 [0; 1]; �[�] is responsive.

Property I The function � ! �[�] is injective.

7Thus, �r =
q�

q�+(1�q)(1��) and �l =
(1�q)�

(1�q)�+q(1��) :
8We assume that a voter votes for P if she is indi¤erent, but this is innocuous since F is non-atomic.
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Property R ensures that the set of responsive equilibria is equivalent to the set of BNE
with positive pivot probability. By property I, in order to identify the equilibrium stratey
�e; it is enough to determine the associated pivotal belief �e:

In order to verify these properties, we have to derive the function � ! �[�] which we
do for each environment separately in section 3.9

Equilibrium is described by the belief �e such that, if all other voters used the strategy
�[�e]; then the belief over states conditioning on a tie would be �e. The belief �e acts like
a prior commonly shared by all voters, but it is induced by the equilibrium strategy pro�le.
Hence we call it the induced prior belief.

Austen-Smith and Banks (1996) de�nes sincere voting as behavior where voting strategy
is optimal with respect to an exogenously given prior. The di¤erence in case of rational
voting is that the voting strategy is optimal with respect to the induced prior which is
endogenously determined. We proceed with our analysis in two steps. First, in section 3
we consider voting behavior as if voters were voting sincerely as a function of a generic
exogenous prior �: In the second step (section 4), we consider which of these values of �
can arise as induced prior beliefs.

3 Voting Behavior

Suppose voters have a generic prior belief Pr(! = R) = �; and the updated posterior beliefs
are �s for s 2 fl; rg: Denote by zs(�) the associated probability of voting for P conditional
on signal s; according to (1).

Denote by t(!; �) the likelihood of a randomly chosen voter voting for P in state !: This
is also the expected vote share for P in state !:

t(L; �) = qzl(�) + (1� q) zr(�) (5)

t(R; �) = qzr(�) + (1� q) zl(�) (6)

In this section, our main objective is to �describe�the function t(�; �) in an environment
(F; q; fxA!g).

At this stage, we introduce an important de�nition. We call a voter with ideal point
x a responsive type if �(x; l) 6= �(x; r). For such a voter, the voting behavior depends on
the signal she obtains. A responsive set is the set of responsive types in a given strategy
pro�le.

We now separately describe the optimal strategy, responsive sets and vote share function
for environments with ordered and unordered alternatives.

9This approach to equilibrium in terms of beliefs was developed in Bhattacharya (2013), where, fact 1
held due to the presence of partisans and fact 2 was implicitly true.
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3.1 Ordered alternatives

Recall that, in the unordered alternatives case, types x < xL are P -partisans, types x > xR
are Q-partisans and types in [xL; xR] are independents who prefer P only in state R:

A voter with type x; signal s and belief �; votes for P if only if EV (xj�s) � 0: Since V
is decreasing in x in both states, the optimal strategy is to vote for P i¤ x is to the left of
a cut-o¤ xs(�); given implicitly by

V (x;R)

�V (x; L) =
1� �s
�s

(7)

Observe that the function �V (x;R)
V (x;R) is positive only in [xL; xR]; so the cut-o¤ must lie

in this interval. For the independent types, the term V (x;R)
�V (x;L) is the ratio of bene�t-to-cost

from P winning. Alternatively, this is the likelihood ratio over states (L to R) at which
type x is indi¤erent between voting P and voting Q:10 This ratio decreases in x; implying
that among the independents, those closer to xL are more prone to voting for P:

Figure 2 depicts the function �V (x;R)
V (x;L) for the ordered alternatives, for a linear V:

Figure 2

Formally, the following Lemma describes �[�].

Lemma 1 Consider an environment with ordered alternatives. Given a prior belief � 2
[0; 1] and signal s 2 fl; rg there exists a cut-o¤ xs(�) 2 [xL; xR] such that the optimal
strategy is to vote for P if x � xs(�) and Q if x > xs(�): Moreover, xs(�) is an increasing
function with (i) xr(�) > xl(�) for � 2 (0; 1); (ii) xr(0) = xl(0) = xL; and (iii) xr(1) =
xl(1) = xR:

10Alternatively, 1

1�V (x;R)
V (x;L)

is the "threshold of doubt" where a type x switches her decision.
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Proof. In Appendix
In the optimal strategy, there is a responsive set [xl; xr] of types that vote for P if they

get signal r and Q if they get signal l. The types to the left (right) of the responsive set
always vote for P (Q) respectively. Such voting behavior mimics the desctiption of moder-
ate swing voters voting informatively while the more extreme types vote uninformatively
for their ex-ante preferred alternative.

For the ordered alternatives environment, Property I is veri�ed since xs(�) is strictly
increasing and Property R is veri�ed since xs(�) 2 [xL; xR]:

From Lemma 1, we have that zs(�) = F (xs(�)): Using this in expressions (5) and (6),
we obtain the vote share functions for the ordered alternative case, which is described in
the following Proposition.

Proposition 1 Consider an environment with ordered alternatives. For each state !;the
expected vote share t(!; �) for P strictly increases with �: Moreover, (i) t(L; �) < t(R; �)
for all � 2 (0; 1); (ii) t(L; 0) = t(R; 0) = F (xL); and (iii) t(L; 1) = t(R; 1) = F (xR):

Proposition 1 states that as the prior belief places progressively higher weight on the
state more favourable to P; the expected share of votes for P increases in both states.

The expected vote shares in the two states are plotted against the prior in Figure 3

Figure 3

3.2 Unordered alternatives

Recall that in this environment, types x < xL (L-group) prefer P only in state L while
types x > xR (R-group) prefer P only in state R: Types in (xL; xR) prefer Q in both states.
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With unordered alternatives, EV (xj�s) � 0 if and only if

�V (x;R)
V (x; L)

� 1� �s
�s

and x � xL; or (8)

� V (x;R)
V (x; L)

� 1� �s
�s

and x � xR (9)

Assumption A1 made on curvature of the loss function now guarantees the added
monotonicity on the �V (x;R)

V (x;L) function which is necessary for optimal strategies to have a
cut-o¤ structure.

Lemma 2 Assume A1. In the unordered alternatives environment, �V (x;R)
V (x;L) is increasing

in [0; xL) and in (xL; 1]:

Proof. In appendix11

For the R-group, �V (x;R)
V (x;L) is the bene�t-to-cost ratio from P winning. According to the

Lemma, this is higher for types closer to 1. Similarly, for the L-group, the net bene�t-to-
cost ratio from P winning is � V (x;L)

V (x;R) which is decreasing in x and thus higher for types
closer to 0: The main implication for voting behavior is that if an independent type x votes
for P for a certain belief, the more extreme types in the same group also vote for P:

Lemma 3 Assume A1. In the unordered alternatives environment, �V (0;R)
V (0;L) > �

V (1;R)
V (1;L)

Proof. In appendix12

Lemma 3 ensures that there is no belief for which there are two types - one in L-group
and one in R-group, both voting for P: In other words, if some type in the L-group votes
for P; all types in the R-group vote for P; and vice versa.

The function �V (x;R)
V (x;L) for the unordered alternatives environment is depicted for a linear

V in Figure 4.

11An important step in the proof of this Lemma follows from Lemma 2.2 in Anderson et al (1993).
12This result follows from convexity of v alone. I thank Rahul Mukherjee for providing a proof of this

Lemma.
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Figure 4

The following Lemma formally describes the optimal strategy function �[�] in the
unordered alternatives environment.

Lemma 4 Consider an environment with unordered alternatives and assume A1. For each
signal s 2 fl; rg; there exist thresholds �s and �s with the feature that:

(a) for � 2 [0; �s]; there is a cut-o¤ xs(�) 2 [0; xL] decreasing in � such that the optimal
strategy is to vote for P if x � xs(�) and for Q if x > xs(�);

(b) for � 2 (�s; �s) it is optimal for all x 2 [0; 1] to vote for Q; and
(c) for � 2 [�s; 1]; there is a cut-o¤ xs(�) 2 [xR; 1] decreasing in � such that the optimal

strategy is to vote for P if x � xs(�) and for Q if x < xs(�):

Moreover, xr(�) < xl(�) whenever � 2 (0; �r) [ (�l; 1); xr(0) = xl(0) = xL; and
xr(1) = xl(1) = xR:

Proof. In appendix:

From the above Lemma, we have for unordered alternatives environment

zs(�) =

�
F (xs(�)) if xs(�) � xL
1� F (xs(�)) if xs(�) � xR

(10)

The function zs(�) is continuous, falling in [0; �s]; zero in (�s; �s) and increasing in

[�s; 1]: If the ranges (�l; �l) and (�r; �r) overlap, then we will have an nonempty interval
of priors � for which all types vote for Q irrespective of the signal. The informativeness
assumption A2 ensures that such is not the case, and therefore the pivot probability is
positive for all �:13

Claim 1 Assume A1 and A2. If q > bq; we have �r < �l

Proof. In appendix
Under A1 and A2, both property R and I are veri�ed in the unordered alternatives

environment. R is true since zs(�) 2 (0; 1) for at least one s for all �: For property I, notice
that xs(�) is locally strictly decreasing for at least one s for all �.

The structure of responsive sets in the unordered alternatives environment is described
in the following corollary to Lemma 4.

Corollary 1 Under assumptions A1 and A2, the responsive sets in the unordered alterna-
tives environment are as follows

(a) When � 2
�
0; �r

�
; the responsive set (xr; xl) is entirely in the L-group

13Notice that Lemma 3 implies that bq > 1
2
and A2 is indeed a restriction on the signal precision.
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(b) When � 2
�
�r; �r

�
; the responsive set (0; xl) is entirely in the L-group

(c) When � 2
�
�r; �l

�
; the responsive set is (0; xl)[ (xr; 1): (0; xl) lies in the L-group

and (xr; 1) lies in the R-group

(d) When � 2
�
�l; �l

�
; the responsive set (xr; 1) is entirely in the R-group

(e) When � 2
�
�l; 1

�
; the responsive set (xr; xl) is entirely in the R-group

Responsive types in the L-group vote P if and only if they get the l-signal and the
responsive types in the R-group vote P if and only if they get the r-signal

Thus, for beliefs strongly supporting state L; the responsive set is in the L-group while
for beliefs strongly supporting state R; the responsive set is in the R-group. Perhaps
interestingly, for moderate beliefs the responsive set is itself split. Only the extreme types
from both ends are responsive and vote for P on getting opposite signals.

The following proposition describes the expected vote share t(!; �) for P as a fucntion
of the prior �:

Proposition 2 Consider an environment with unordered alternatives and assume A1 and
A2. Both t(L; �) and t(R; �) are decreasing in (0; �r) and increasing in (�l; 1):There exists
some belief �� 2 (�r; �l) such that for � < ��; t(L; �) > t(R; �); for � > ��; t(L; �) <
t(R; �) and for � = ��; t(L; �) = t(R; �): Moreover, t(L; 0) = t(R; 0) = F (xL) and
t(L; 1) = t(R; 1) = 1� F (xR) :

Proof. See Appendix.
Figure 5 depicts the vote share functions for the unordered alternatives environment.14

14This �gure has been drawn based on the following environment: v(z) = z2; q = 0:8; xPL =
0:125; xQL = 0:375; xQR = 0:625; xPR = 0:875; i.e., xL = 0:25 and xR = 0:75: The pdf of x is

f(x) =

8<:
1 for x 2 [0; 0:25]
3 for x 2 [0:75; 1]
0 otherwise

: This gives us �r = 1
13
; �r = 3

7
; �l = 4

7
and �l = 12

13
: .
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Figure 5

Before concluding this section, we make a few observations.
First, from Proposition 1 and 2, in both environments, t(!; �) is continuous in � and

bounded above 0 and below 1.
Second, the functions t(L; �) and t(R; �) are not exactly U-shaped in the unordered

environment. They are initially falling and �nally rising, but the shape in the intermediate
interval (�r; �l) depends on the parameters.

Third, Bhattacharya (2013) already allows us to see why we will have contrasting results
in the two types of environment. The ordered alternatives environment satis�es the Strong
Preference Monotonicity condition since t(L; �) < t(R; �) for all � 2 (0; 1) (by Proposition
1): Hence,. FIE holds for every information structure. On the other hand, by Proposition
2, the vote share functions "cross" at ��. Therefore, Weak Preference Monotonicity is
violated for all q > bq; and there exists an equilibrium with induced prior converging to ��

where aggregation fails as P receives equal vote share in both states.

4 Equilibrium Analysis

In this section, we borrow the technique developed in Bhattacharya (2013) to solve for
limit equilibria in a game. Given the expected vote share function t(!; �); we identify
which values of � will satisfy equation 4, i.e., yield optimal strategies �[�] that will return
the same belief � conditioning on pivotality.
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We �rst show existence of equilibria for �nite population and then provide a charac-
terization of limit values of equilibrium induced priors for large electorates.

4.1 Finite population

Consider a candidate induced prior belief �: When all other voters use the strategy �[�];
the probability of a random voter voting for P in state ! is t(!; �): Under a threshold rule
� a voter is pivotal if bn�c votes are cast for the policy P from among the remaining n
voters, where btc denotes the largest integer weakly less than t. The probability that a
given voter is pivotal in state ! is given by:

Pr(pivj�; !) =
�
n� 1
bn�c

�
(t(!; �))bn�c (1� t(!; �))n�1�bn�c (11)

Since 0 < t(!; �) < 1 for either environment, we must have Pr(pivj�; !) > 0:
From the equiliibrium condition (4), we obtain,

�

1� � =
� (Rjpiv; �)
� (Ljpiv; �) =

Pr(pivj�;R)
Pr(pivj�; L) ;

which, using the pivot equations (11), gives us

� =
H(�; n; �)

1 +H(�; n; �)
where

H(�; n; �) =
(t(R; �))bn�c (1� t(R; �))n�1�bn�c

(t(L; �))bn�c (1� t(L; �))n�1�bn�c
(12)

Any solution to equation (12) is an equilibrium belief denoted by �n� (indexing by the
voting rule and number of voters), and the equilibrium strategy pro�le is given by �[�n� ]:

Equation (12) admits a solution, since that the right hand side is continuous in � and
bounded above 0 and below 1; but the left hand side continuously changes from 0 to 1. It
is important to note that �n� must lie in (0; 1) from the equation (12).

We cannot characterize �n� ; but we can characterize the limit values of �
n
� ; which is

what we do next.

4.2 Large Electorates

Fixing an environment and voting rule �; consider a sequence of games by letting the
number of voters grow unboundedly, and denote the limit of the equilibrium sequence
h�n� i

1
n=1 by �

0
�.
15 Since condition (12) must be satis�ed along the sequence, we obtain the

15The existence of such a limit point (more formally, accumulation point of a subsequence) is guaranteed
by the fact that the space of beliefs is compact.
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following limit equilibrium condition.

�0� = lim
n!1

�
H(�n� ; n; �)

1 +H(�n� ; n; �)

�
(13)

The vote share functions t(!; �); ! 2 f0; 1g are determined entirely by the environment
(F; q; fxA!g): Given t(!; �), we obtain the correspondence � : [0; 1]! [0; 1]; where �(�) is
the set of voting rules � for which there exists a sequence of equilibria with induced priors
�n� converging to �: We then "invert" the correspondence to determine the set of limit
values of induced prior beliefs for each value of �:

For values of � such that t(L; �) 6= t(R; �); de�ne the function

��(�) =
log 1�t(L;�)1�t(R;�)

log t(R;�)(1�t(L;�))t(L;�)(1�t(R;�))

(14)

The following remark establishes a few important properties of the function ��(�):

Remark 1 ��(�) is continuous and lies strictly between t(L; �) and t(R; �): Moreover, if
both t(L; �) and t(R; �) are strictly increasing or strictly decreasing for some �, then so is
��(�):

Proof. In appendix
The second part of the remark ensures that ��(�) is increasing in the ordered alter-

natives environment (from Proposition 1). In the unordered alternatives case, ��(�) is
decreasing in the range (0; �r) and increasing in (�l; 1) (from Proposition 2). ��(�) can,
however, be non-monotonic in the range (�r; �l):

In order to state the (partial) characterization result in a concise way, we need another
de�nition. We say that � 2 [0; 1] is regular if either (i) ��(�) is well-de�ned and strictly
monotonic in a neighborhood of �, or (ii) t(L; �) = t(R; �) 6= �:16

Proposition 3 For an ordered alternatives environment, de�ne the correspondence �(�)
as follows:

�(�) = �O(�) �

8<:
(i) For � 2 (0; 1);�(�) = ��(�)
(ii) �(0) = f� : � � F (xL)g
(iii) �(1) = f� : � � F (xR)g

For an unordered alternatives environment, de�ne the correspondence �(�) as follows:

�(�) = �U (�) �

8>><>>:
(i) For � 2 (0; ��) [ (��; 1); �(�) = ��(�)
(ii) �(��) = f� : � 2 (0; 1)g
(iii) �(0) = f� : � � F (xL)g
(iv) �(1) = f� : � � 1� F (xR)g

16The local monotonicity property can also be written as d��

d�
6= 0; but at �s and �s; the right hand

derivative di¤ers from the left hand derivative. Local monotonicity holds at these points as long as both
the right hand derivative and left hand derivative are positive or both negative.
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For both classes of environments, given any � 2 [0; 1]; there exists a sequence of equilibria
with induced prior beliefs �n� converging to � only if � 2 �(�): Conversely, there is a
sequence of equilibria with induced prior �n� converging to � if � 2 �(�) provided � is
regular.

Proof. See supplementary Online appendix
The above proposition characterizes the limits of all equilibrium sequences for (almost)

every voting rule. It says that the equilibrium beliefs in the limit are determined by the
shape of the vote share functions t(L; �) and t(R; �): If � produces unequal vote shares in
the two states, then there is at most one voting rule ��(�) (and exactly one as long as � is
regular) that supports an equilibrium sequence converging to �: If � produces equal vote
shares in the two states, there exists a continuum of voting rules that support an equilibrium
sequence converging to �; as described in the correspondence �(�): In particular, in the
unordered alternatives environment, for every � 2 (0; 1) there is an equilibrium with beliefs
converging to �� except possibly for the case � = t(!; ��):17

Figure 6 separately shows the correspondence �(�) for the ordered alternatives case
(�O(�)) and for the unordered alternatives case (�U (�)). In both cases, the correspondence
�(�) is marked with the thick black line.

Figure 6

The formal proof of Proposition 3 follows Lemma 1, 2 and 3 in Bhattacharya (2013)
with minor variations and is furnished in the appendix. We provide a brief roadmap for
the proof below.

17The indeterminacy at � = t(!; ��) matters for voting rules that are trivial in the sense that they select
P as the winner irrespective of the state under full information.
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4.2.1 Proof sketch

First, we demonstrate that a necessary condition for having induced priors converging to
any belief � is that pivot probabilities in the two states must be equal at �; given the
voting rule. Suppose that, for some �0 2 (0; 1); there exists an equilibrium sequence �n�
converging to �0: If t(L; �0) = t(R; �0); then trivially, pivot probabilities would be equal
across states. So, suppose that t(L; �0) < t(R; �0). Ignoring the integer issue, the limit
equilibrium condition boils down to

�0

1� �0
= lim
n!1

"
(t(R; �n� ))

� (1� t(R; �n� ))
1��

(t(L; �n� ))
� (1� t(L; �n� ))

1��

#n
Since the left hand side is a positive �nite number, the expression inside square brackets
on the right hand side must converge to 1.�

t(L; �0)
�� �

1� t(L; �0)
�1��

=
�
t(R; �0)

�� �
1� t(R; �0)

�1��
(15)

In other words, the pivot probability must be the same in both states at �0:
Thus, for t(L; �0) 6= t(R; �0); the necessary condition identi�es a unique voting rule �

for which there may be a sequence �n� ! �0: This voting rule satis�es equation (15) and is
given by ��(�0) as in equation 14. To see why it must be the case that t(L; �0) < ��(�0) <
t(R; �0), notice that voting rules � � t(L; �0) produce strictly higher pivot probability in
state L and � � t(R; �0) produce strictly higher pivot probability in state R:

Given that �0 is regular, we now show that there exists an equilibrium sequence with
�n� ! �0 when � = ��(�0): Assume wlog that �� is increasing around �0: For beliefs �0

in the left-neighbourhood of �0; we must have ��(�0) < ��(�0): For such a �0; RHS of
(15) is greater than the LHS. Therefore, H(�0; n; ��(�0)) ! 1; where the H function is
obtained from (12) 18 Similarly, for beliefs �0 in the left-neighbourhood of �0; we must have

H(�0; n; ��(�0))! 0: By continuity, there must be a ��
�(�0)
n converging to � that satis�es

equation (12), i.e., �
1�� = H(�; n; �

�(�0)):
Next, consider values of � such that t(L; �) = t(R; �) = t (say): These are f0; 1g for the

ordered alternatives environment and f0; ��; 1g for the unordered alternatives environment.
Equality of pivot probabilities across states is trivially satis�ed for all voting rules � 2 (0; 1)
for these beliefs. However, for the corner beliefs, we can further restrict the set of candidate
beliefs to either � � t or � � t: Whether � � t or � � t will obtain for a particular
environment depends on two factors: For a sequence �n ! � 2 f0; 1g; whether t(!; �n)
approaches t from above or below, and (ii) the sign of t(L; �n)� t(R; �n) close to �:

For a particular illustration, consider � = 0 for the unordered alternatives case. Here,
t = F (xL): If we are to have any equilibrium sequence �n ! 0; it must be the case that the

18This utilizes the following observation: Suppose g(x; y; �) = x�(1�x)1��
y�(1�y)1�� for some 1 > x > y > 0: Then,

we must have @g(x;y;�)
@�

> 0:
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probability of P getting � share of votes is stictly higher in state L than in state R along
the sequence. Since t(R; �n) < t(L; �n) < t in the neighbourhood of 0; this is satis�ed if
� � t. If on the other hand, � < t; then we will have � < t(R; �n) < t(L; �n) which will lead
to a higher pivot probability in state R; which is a contradiction. Therefore, � � F (xL)
is consistent with limit value of induced prior being 0 while � < F (xL) is not. Finally, we
use a similar construction as the case with unequal vote shares to show the existence of a
sequence of equilibria with induced prior converging to 0; for any � � F (xL):

Finally, consider the case � = ��; and again write t(L; ��) = t(R; ��) � t: Unlike the
corner cases, it is possible for a sequence �n to approach �� either from the left or right.
We use the same logic to show that for � > t; there is an equilibrium sequence approaching
�� from one direction and for � < t; there is a corresponding sequence approaching �� from
the other direction.

5 Election Outcomes and Information Aggregation

In this section, we ask whether election outcomes under incomplete information converge
to the complete information outcome. In our set-up, the state can be identi�ed if signals
were pooled. Thus, if the electoral outcome approaches the complete information outcome,
we say that the election aggregates all the dispersed private information. Our main result
is that information aggregation is guaranteed when the alternatives are ordered but not
when alternatives are unordered.

In this section, we concentrate on consequential voting rules, i.e., rules under which
di¤erent alternatives would be elected in the two states, in the full information benchmark.
Under ordered alternatives, we assume that F (xL) < � < F (xR) ; i.e., a �-majority of the
population prefers P in state R and Q in state L: In case of unordered alternatives, assume
wlog that F (xL) < 1 � F (xR): Now, the consequential rules are de�ned by F (xL) < � <
1� F (xR): these are the rules for which a �-majority prefers P in state R and Q in state
L.19

Given a consequential rule and the environment under consideration, we say that an
equilibrium sequence is Full Information Equivalent if under that sequence, the probability
that P wins in state R and Q wins in state L converges to 1.20

The next proposition establishes that information aggregation is guaranteed when the
alternatives are ordered.

19Our framework allows us to discuss the information aggregation property for non-consequential rules
too. We do so in a later section.
20We have chosen our parameters in such a way that the full information outcome is the same for both

ordered and unordered environments, purely for brevity of exposition.
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Proposition 4 Consider an environment with ordered alternatives and a consequential
voting rule. All equilibrium sequences are full information equivalent and the induced prior
belief in all equilibrium sequences converge to the a unique limit.

The proof follows from remark 1 and Proposition 3. The idea can be readily seen from
�gure 7. There is a unique value �a for which �

�(�) = �: Since t(L; �a) < � < t(R; �a); by
the strong Law of Large numbers, P wins almost surely in state R and Q in state L:

Figure 7

Now we turn to the behavior of voters in this equilibrium. Denote the type x with
F (x) = � as the �-median. There are two properties of the responsive set that drives
information aggregation. First, since �-median is contained in the responsive set and
the types on two sides of the set vote for opposite alternatives, the responsive voters are
in�uential : they can a¤ect the outcome of the election. Second, the preferences of the
responsive voters are aligned with the complete information outcome: they prefer P in
state R and Q in state L. Thus, by voting for P on receiving signal r and for Q on
receiving signal l; they �swing� the election in favor of the ex-post �-majority preferred
alternative.

It is worthmentioning that the above proposition is stronger than Theorem 1 in Bhat-
tacharya (2013) in that it establishes uniqueness of the limit of induced prior.

The next proposition describes the outcomes in the unordered alternatives case.

Proposition 5 Consider an environment with unordered alternatives and a consequential
voting rule. Assume A1 and A2. Each equilibrium sequence satis�es exactly one of the
following limit properties: (i) The induced prior converges to 0 and Q wins almost surely
in each state, (ii) the induced prior converges to �� and the Q wins almost surely in each
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state; and (iii) the induced prior converges to some value in (��; 1) and the outcome is full
information equivalent.

Figure 8 illustrates the three di¤erent kinds of equilibrium sequences in this envi-
ronment. The three possible limit values of the induced prior are �1; �2(= ��) and
�3(= 0): Information is aggregated in the sequence with beliefs converging to �1 since
t(L; �1) < � < t(R; �1): In the two other sequences, we have t(L; �) = t(R; �) < �; and Q
wins in both states.

Figure 8

Observe that, with a general distribution of voter preferences, we cannot rule out the
possibility of multiple information-aggregating sequences with di¤erent limit beliefs. Mul-
tiple solutions to ��(�) = � can arise in (��; �l) since ��(�) can be non-monotonic in this
interval. We can avoid � being in this range by making F (xL) large enough, since we must
have � > F (xL) by de�nition.

The following remark shows that if the L-group and R-group are not too dissimilar in
size, then there are exactly three possible limit values of the induced prior belief.

Remark 2 Consider an environment with unordered alternatives and a consequential vot-
ing rule. Assume A1 and A2. If F (xL) � q

�
1� F (xr

�
(�l
��
; then the induced prior

belief in each equilibrium sequence converges to one of three possible values 0; �� and some
�1 2 (�l; 1). In sequences with beliefs converging to 0 and ��, Q wins almost surely in each
state. Sequences with beliefs converging to �1 are full information equivalent.

5.1 Equilibrium behavior

We now study the voting behavior in the di¤erent equilibria in the unordered case.
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5.1.1 Information Aggregating Equilibrium

Existence of an equilibrium sequence with induced prior converging to some value in (��; 1)
follows from continuity of ��(�) and the fact that ��(��) < � < ��(1): This sequence satis�es
FIE, since t(L; �) < t(R; �) in (��; 1).

In this sequence, the limit belief �a places large enough weight on state R that the
responsive set lies in the R-group. Thus, the alignment condition for responsive voters
is satis�ed. Since the �-median from the right (the type x satisfying � = 1 � F (x)) is
contained in the responsive set, the responsive voters are in�uential in a¤ecting the voting
outcome, and we obtain the complete information outcome in each state.

5.1.2 Block Voting Equilibrium

Next, consider the equilibrium sequence with induced prior converging to 0: In this se-
quence, the responsive set lies in the L-group. But such a responsive set can never contain
the �-median because F (xL) < �: The responsive set constitutes a vanishing fraction of
types close to xL.

Observationally, limit behavior in this equilibrium resembles block voting: the R-group
vote in favor of Q while the L-group votes for P irrespective of the private signals received.
Such uninformative voting behavior is fuelled by the belief that (almost) everyone else is
also going to vote uninformatively.

As an aside, notice that while there is an uninformative equilibrium with beliefs con-
verging to 0; there is no equilibrium sequence with beliefs converging to 1: In the former
case, t(R; �n) < t(L; �n) < � for large enough n; implying that a vote share of exactly � for
P is much more likely in sate 0 than in state R which is consistent with �n ! 0: On the
other hand, suppose voters believe � is close to 1: In this case, t(R; �n) > t(L; �n) > � for
large enough n; making the pivotal event much more likely in state L; which is inconsistent
with �n ! 1:

5.1.3 Activist Voting Equilibrium

Finally, consider the equilibrium sequence with �n ! ��. At ��; the belief is moderate
enough so that the responsive set is split between the L-group and R�group. An equi-
librium obtains at this belief since the pivot probabilities in the two states are equal at
��. At this belief, only the extreme types in either group vote for P if they get a signal
that favors P: On the other hand, the non-extreme types in both groups vote for Q (the
"central" alternative) at this moderate belief, and Q wins in both states.

Observationally, the ones with largest magnitude of utility di¤erence (the "activists")
in the two groups appear to be voting for the same alternative for opposite reasons. Such
behavior is quite di¤erent from the conventional description that the moderate voters are
the ones that swing the election one way or the other depending on the information they
receive.
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Notice that in both the block voting equilibrium and the activist voting equilibrium,
the responsive voters fail to be in�uential, and therefore the same alternative wins in both
states. The alignment condition also fails in both these cases. Thus, both the necessary
conditions for FIE with consequential rules fail in these equilibria.21

6 Discussion

In the main body of the paper, we have shown that information may not be aggregated due
to a co-ordination failure among voters and provided a description of the possible types of
equilibrium behavior. We conclude by providing some comments on robustness of results
and multiplicity of equilibria.

6.1 Other voting rules

For all practical purposes, we are interested in consequential rules. But our theoretical
structure allows us to determine the outcomes for all voting rules � 2 (0; 1). Here, we
brie�y discuss the aggregation properties of the non-consequential rules.

Non-consequential rules implement the same alternative in both states under full infor-
mation. We de�ne a threshold rule � as P -trivial (respectively, Q-trivial) if in each state,
more than � share of the population prefers P (respectively, Q).

In an ordered alternatives environment, threshold rules � < F (xL) are P -trivial and
rules � > F (xR) are Q-trivial. From �gure 7, it is clear that information is aggregated for
all trivial rules in the ordered alternatives environment. For � < F (xL) ; �

n
� ! 0: Since

t(L; 0) = t(R; 0) = F (xL) > �; P wins in both states almost surely. Similarly, for any
Q-trivial rule, �n� ! 1 and Q wins in both states almost surely: Thus, FIE holds for all
� 2 (0; 1) if we have ordered alternatives.

In an unordered alternatives environment, � < F (xL) de�ne the P -trivial rules and � >
1�F (xR) de�ne theQ-trivial rules. For any such rule, there are three equilibrium sequences
with induced priors converging to 0; �� and 1 respectively. Information aggregation is
guaranteed for any Q-trivial rule simply because t(!; �) � 1 � F (xR) < � for every �.
However, this result is not true for P -trivial rules. To see this, de�ne t(L; ��) = t(R; ��) =
t:22 For P -trivial rules � > t; there is no equilibrium that aggregates information. In one
equilibrium sequence, �n� ! �� and the policy loses in both states. There can be additional
equilibria with beliefs in (0; ��) [ (��; 1): In these equilibria, Q wins almost surely in one
state. Figure 9 demonstrates the equilibria for one such rule.
21One might wonder whether FIE can fail only due to the failure of alignment. Under our assumptions,

the misaligned group is never in�uential. Under more general preferences (for example if A1 is relaxed), it
is indeed possible that the two vote share functions cross multiple times and � = ��(�) at some value of
� where t(L; �) > � > t(R; �): In such a case, we would get the "wrong" outcome in both states under a
consequential rule.
22The Proof of Proposition 5 shows that t < F (xL)
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Figure 9

However, FIE holds for P-trivial rules which are low enough. For � < min� ��(�); equilibrium
sequences here have a unique limit belief ��; and t(L; ��) = t(R; ��) = t > �:

There are two important takeaways from the above discussion. First, for an unordered
alternatives environment, the only voting rules that are aggregate information in all equi-
librium sequences are the very high or very low thresholds which implement the same
outcome in both states under full information. Moreover, there is a continuum of voting
rules for which information-aggregating equilibria fail to exist. This is in contrast with
the ordered alternatives environment where all non-unanimous voting rules aggregate in-
formation in every equilibrium. Second, the bias for Q shows up in a di¤erent form when
we consider non-consequential rules: while FIE is guaranteed for all equilibria for Q-trivial
rules, there exist P -trivial rules for which FIE fails in some or all equilibria. This again
underscores how preference con�ict among voters undermines aggregation of information.

6.2 Sincere Voting

We have assumed that voters are aware of the voting environment and how their actions
a¤ect the outcome. That the voters condition on being decisive follows from this presump-
tion of voter rationality. However, pivotal voting has been criticised as a description of
behavior in a stream of work (Esponda and Vespa, 2014; Margolis 2001). Now, we show
that our results would not change much if we had simply assumed sincere behavior, i.e., if
voters responded optimally to their exogenous prior.

Given any exogenous prior � and a consequential rule �; information is aggregated
under sincere voting if and only if t(L; �) < � < t(R; �): Under ordered alternatives, this
property holds for every � 2 (0; 1). Under unordered alternatives, FIE holds only for a
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for only a speci�c interval of priors � 2 (b1; b0) where b1 solves t(R; �) = � and b0 solves
t(L; �) = �: Since (b1; b0) is a subset of (��; 1); t(L; �) < � < t(R; �) for any prior in
this interval. Thus, with sincere voting FIE holds for all exogenous priors under ordered
alternatives but only for a speci�c range of priors for unordered alternatives.

6.3 Robustness

One stark feature of the model is that the outcomes are remarkably robust to variation in
the parameters. For example, in the block voting and the activist voting equilibria, Q is
elected even for very small noise in the signals. Similarly, these outcomes do not depend
on the relative sizes of the opposing groups. In this sense, the aggregation failure arises
from the existence of and not from the extent of state-contingent con�ict in preferences.

We have assumed that a priori, the two states are equally likely. While this marginally
simpli�es the calculations, all that matters for the characterization is the vote share func-
tions t(�; �) which depend only on F and q:23

In the unordered alternatives case, we provide the characterization of equilibria for
high signal precisions (assumption A2). While this assumption stacks the deck against
non-informative equilibria and therefore makes our results sharper, we are forced to make
this assumption in order to ensure that pivot probabilities are positive in each state for all
prior beliefs: In absence of such an assumption, there might be additional equilibria where
voters use weakly dominated strategies.24

It is important at this stage to discuss the role of assumption A1, which is understood
to be a restriction on �curvature�of the utility function. It does not matter at all for the
FIE property in the ordered alternatives environment. It is also not necessary to establish
the existence of one non-aggregating outcome in the unordered alternatives environment.
It is needed for providing enough regularity to the shape of the vote share function so that
we can characterize the full set of equilibria. In absence of the assumption, we could have
multiple crossings of the vote share functions, all of which would be equilibrium beliefs.
In addition, we would then have the possibility of equilibria with wrong outcomes in each
state.

We have made the assumption that xAL � xAR for both alternatives A 2 fP;Qg: This
assumption restricts the number of combinations of policy-location tuples. If we had relaxed
this assumption, all results would go through except for the special case where we have
a "double �ip". These are combinations like xPL < xQR < xPR < xQL where in addition to
unordered alternatives (xP! � x

Q
! having di¤erent signs in di¤erent states), the P-locations

and Q-locations alternate with each other. In these "double �ip" cases, the monotonicity

23Bhattacharya (2013) provides the entire analysis with general priors.
24An alternative way to ensure positive pivot probabilities for all � would be to assume the existence

of committed voters for each alternative. While this has been the standard assumption in the existing
literature (Feddersen and Pesendorfer (1997), Bhattacharya 2013), this does not sit well with the idea of
voter ideal points being distributed on the Downsian space.
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condition on �V (x;R)
V (x;R) may fail unless we make stronger assumptions on the loss functions.

For instance, all our results would hold in this more general case if we had a quadratic loss
function.

While there are multiple equilibria in the ordered alternative environment, we cannot
think of any simple way to re�ne away any equilibrium sequence. In this sense, our message
is that uncertainty about outcomes due to co-ordination problems is central to elections
with diverse preferences. However, the non-aggregating equilibria have one focality prop-
erty that the FIE equilibria do not have. In the limit of the former equilibria, the induced
prior belief and strategies are independent of the particular voting rule in use. On the
other hand, the FIE equilibria involve strategies and beliefs that are very sensitive to the
particular value of the threshold rule �:
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8 Proofs Omitted from the main text

8.1 Proof of Lemma 1

EV (xj�s) is downward sloping since V (x; !) is decreasing in both states. Therefore, if
there is some cut-o¤ xs(�) satisfying EV (xj�s) = 0; then EV (xj�s) > 0 for x < xs(�) and
EV (xj�s) < 0 for x > xs(�): For � = 1; we have �s = 1 and EV (xRj�s) = V (xR; R) = 0
for s 2 fl; rg: For � = 0; we have �s = 0 and EV (xLj�s) = V (xL; L) = 0 for s 2 fl; rg:
Now, consider � 2 (0; 1): The cut-o¤ xs(�) is given by

V (x;R)

�V (x; L) =
1� �s
�s

where the right hand side is a �nite positive number. The left hand side takes �nite positive
values only in the range (xL; xR): Existence follows from the fact that the LHS decreases
continuously from 1 to 0 in the range of x: Moreover, as � increases, the RHS goes down
and xs(�) must increase since the LHS is decreasing. Also, xr(�) > xl(�) since �r > �l:

8.2 Proof of Lemma 2

The proof of Lemma 2 relies on the following property.
Property M: Suppose a; b; c; d are numbers in (0; 1) with a < b < c < d: There is

a function v(z) de�ned on [0; 1] with v0 > 0 and v00 > 0 for all z > 0: Assume v00(z)
v0(z) is

decreasing, i.e., v0 is logconcave. De�ne, for x 6= a+b
2

f(x) =
v(jx� dj)� v(jx� cj)
v(jx� bj)� v(jx� aj)

Then f(x) is increasing in (0; a+b2 ):

We �rst verify the statement that �V (x;R)
V (x;L) is indeed increasing in (0; xL) [ (xL; 1) if

property M is true.

Setting
�
xPL ; x

Q
L ; x

Q
R; x

P
R

�
= (a; b; c; d); we have f(x) = �V (x;R)

V (x;L) :

Property M directly tells us that �V (x;R)
V (x;L) is increasing in (0; xL):

For x 2 (xR; 1); consider x = 1� y: Then, f(x) equals

f(1� y) = g(y) = v(j1� d� yj)� v(j1� c� yj)
v(j1� b� yj)� v(j1� a� yj)

and y 2
�
0; 1� c+d

2

�
Setting (a0; b0; c0; d0) = (1�d; 1� c; 1� b; 1�a); we have y 2

�
0; a

0+b0

2

�
and g(y) = 1

f(y) :

If property M is true, g(y) must be decreasing in y 2
�
0; a

0+b0

2

�
: Therefore, f(x) must be

increasing in x 2 (xR; 1):
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Finally, consider f(x) for x in (a+b2 ;
c+d
2 ). Let the numerator of f(x) be n(x) and the

denominator d(x): It can be veri�ed that (i) n(x) > 0 and d(x) < 0; and (ii) by convexity
of v; n0(x) < 0 and d0(x) < 0. The sign of f 0(x) is the same as that of d(x)n0(x)�n(x)d0(x);
which is positive. This proves that�V (x;R)

V (x;L) is increasing in the range (xL; xR): By continuity

of �V (x;R)
V (x;L) at x = xR; Lemma 2 is true (provided property M is true).

Now we turn to the proof of property M.
We prove the result by dividing the statement of the lemma into three separate cases.
Case 1: 0 < x < a:

f(x) =
v(d� x)� v(c� x)
v(b� x)� v(a� x)

Now, f 0(x) is positive if

v0(d� x)� v0(c� x)
v(d� x)� v(c� x) <

v0(b� x)� v0(a� x)
v(b� x)� v(a� x)

With some abuse of notation, denote d�x = d; c�x = c; b�x = b and a�x = a: Notice
that we still have the same ordering of a; b; c; d and they lie in (0; 1):

We then need to show
v0(d)� v0(c)
v(d)� v(c) <

v0(b)� v0(a)
v(b)� v(a) (16)

The proof of inequality (16) relies on the following Lemma.

Lemma 5 (Lemma 2.2 in Anderson et al (1993)) De�ne, for 0 < p < q;

T (q; p) =
v0(q)� v0(p)
v(q)� v(p)

For any x 2 (a; b); T (x; a) and T (b; x) are both decreasing in x:

Proof.

dT (x; a)

dx
=

1

[v(x)� v(a)]2
�
(v(x)� v(a)) v00(x)�

�
v0(x)� v0(a)

�
v0(x)

�
Now, by Cauchy�s mean value theorem, there is some y 2 (a; x) such that

v0(x)� v0(a)
v(x)� v(a) =

v00(y)

v0(y)
>
v00(x)

v0(x)
;

implying that dT (x;a)dx < 0: Similarly,

dT (b; x)

dx
=

1

[v(b)� v(x)]2
�
� (v(b)� v(x)) v00(x) +

�
v0(b)� v0(x)

�
v0(x)

�
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Now, by Cauchy�s mean value theorem, there is some y 2 (x; b) such that

v0(b)� v0(x)
v(b)� v(x) =

v00(y)

v0(y)
<
v00(x)

v0(x)
;

implying that dT (b;x)dx < 0:
From Lemma 5, we prove the next Lemma.

Lemma 6 For any 0 < p < r < q; T (r; p) > T (q; r)

Proof. T (r; p) > T (q; p) since T (x; p) is decreasing, and T (q; p) > T (q; r) since T (q; x)
is decreasing, by Lemma 5.

Now, we use the Lemma 6 to prove inequality (16). Since 0 < b < c < d; T (d; c) <
T (c; b) by Lemma 6. And applying Lemma order on 0 < a < b < c; we get T (c; b) < T (b; a):
Therefore, T (d; c) < T (b; a): This concludes the proof of Property M for case 1.

Now we turn to the other case
Case 2: 0 < a < x < a+b

2 :
In this case,

f(x) =
v(d� x)� v(c� x)
v(b� x)� v(x� a)

Now, f 0(x) > 0 if
v0(d� x)� v0(c� x)
v(d� x)� v(c� x) <

v0(b� x) + v0(a� x)
v(b� x)� v(a� x)

With some abuse of notation, denote d�x = d; c�x = c; b�x = b and x� a = a: Notice
that we still have the same ordering of a; b; c; d and they lie in (0; 1):

We then need to show
v0(d)� v0(c)
v(d)� v(c) <

v0(b) + v0(a)

v(b)� v(a) (17)

Since v0(b)+v0(a)
v(b)�v(a) >

v0(b)�v0(a)
v(b)�v(a) ; inequality (16) implies inequality (17), which concludes the

proof for case 2.

8.3 Proof of Lemma 3

The result uses the following Lemma. De�ne the function

R(s; t) =
v(s)� v(t)
s� t

for 0 < s < t < 1.

Lemma 7 For any p; q; r with 0 < p < r < q < 1; R(q; r) > R(q; p) > R(r; p)
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Proof. Note that r = �p+ (1��)q for � = q�r
q�p and 0 < � < 1: By strict convexity of

v; �v(p) + (1� �) v(q) > v(r); or

v(q)� v(r) > �fv(q)� v(p)g = q � r
q � pfv(q)� v(p)g

v(r)� v(p) < (1� �) fv(q)� v(p)g = r � p
q � pfv(q)� v(p)g

These two inequalities yield R(q; r) > R(q; p) and R(r; p) < R(q; p) respectively.
Next, consider (a; b; c; d) such that 0 < a < b < c < d < 1: Then, we also have

1 > 1� a > 1� b > 1� c > 1� d > 0:
By Lemma 7, we must have R(d; c) > R(c; b) > R(b; a): Also, R(1 � a; 1 � b) >

R(1� b; 1� c) > R(1� c; 1� d): Therefore,

R(d; c)

R(b; a)
> 1 >

R(1� c; 1� d)
R(1� a; 1� b)

implying
v(d)� v(c)
v(b)� v(a) >

v(1� c)� v(1� d)
v(1� a)� v(1� b)

Replacing (a; b; c; d) by
�
xPL ; x

Q
L ; x

Q
R; x

P
R

�
respectively, we get our required result.

8.4 Proof of Lemma 4

Fix s 2 fl; rg: For � = 1; �s = 1 and EV (xj�s) = V (x;R) � 0 i¤ x � xR: Similarly,
for � = 0; EV (xj�s) = V (x; L) � 0 i¤ x � xL: Now, consider � 2 (0; 1): We have
EV (xj�s) � 0 i¤ condition (8) or condition (9) holds.

Denote v0 � �V (0;R)
V (0;L) and v1 � �V (1;R)

V (1;L) : By Lemma 2, �
V (x;R)
V (x;L) 2 [v0;1) when x 2

[0; xL] and �V (x;R)
V (x;L) 2 [0; v1] when x 2 [xR; 1]: Lemma 3 states that v0 > v1; implying that

x! �V (x;R)
V (x;L) is one-to-one. Hence, for � such that

1��s
�s

2 [0; v1][ [v0;1); there is a unique
solution to �V (x;R)

V (x;L) =
1��s
�s

given by xs(�):

Consider now some � such that 1��s
�s

= v 2 [v0;1): The corresponding xs(�) lies in
[0; xL]: By (8), x < xs(�) votes for P and x 2 (xs(�); xL] votes for Q due to monotonicity
of V (x;R)V (x;L) in [0; xL]: Since

V (x;R)
V (x;L) < v1 < v for all x � xR; all types x � xR vote for Q by

(9). All types (xL; xR) vote for Q since both EV (xj�s) < 0 in that range for all �s: This
establishes that for 1��s�s

= v 2 [v0;1); there is a type xs(�) such that x � xs(�) votes for
P and x > xs(�) votes for Q: Since �V (x;R)

V (x;L) is increasing and
1��s
�s

is decreasing in �; xs(�)

must be a decreasing function as long as 1��s�s
2 [v0;1): Let �s be the value of � for which

1��s
�s = v0: Then, by continuity, there is an interval [0; �s] of � for which

1��s
�s

2 [v0;1):
This completes part (a) of the Lemma.
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For part (b), de�ne �s as that value of � for which 1��s
�s = v1: Since v0 > v1; it must

be that �s > �s: For � 2 (�s; �s); 1��s�s
2 (v1; v0): Consider 1��s

�s
= v0 2 (v1; v0): For all

x � xR; �V (x;R)
V (x;L) < v

0 = 1��s
�s
; so no type x � xR votes for P by (9). Similarly, by (8), no

type x � xL votes for P: All types (xL; xR) vote for Q for every belief.
Part (c) follows in the same way as part (a).
Finally, notice that for any � 2 (0; 1); �r > �l; or 1��r

�r
< 1��l

�l
: This implies that

�r < �l; �r < �l and xr(�) < xl(�) whenever both cut-o¤s are in the same group, i.e.,

� 2 (0; �r) [ (�l; 1):

8.5 Proof of Claim 1

We will now express �r and �l as functions of q: Consider the signal precision q for which

�r(q) = �l(q) = b� Then,

1� �r
�r

=
(1� q)(1� b�)

qb� = v1

1� �l
�l

=
q(1� b�)
(1� q)b� = v0

where v0 � �V (0;R)
V (0;L) and v1 � �

V (1;R)
V (1;L) : By eliminating

b�; we get
q

1� q v1 =
1� q
q
v0 or q =

1

1 +
q

v1
v0

� bq 2 �1
2
; 1

�
;

since v1 < v0 by Lemma 3.

For q > bq; given � = b�; we must have 1��r
�r

= (1�q)(1�b�)
qb� < (1�bq)(1�b�)bq0b� = v1: Hence,

�r(q) < b�: Similarly, �l(q) > b�; implying �r(q) < �l(q):
8.6 Proof of Proposition 2

The vote share functions t(!; �) for ! 2 f0; 1g are given by (5) and (6), and the functions
zs(�), s 2 fl; rg by (10). By claim (1) we have 0 < �r < �r < �l < �l < 1: In � 2 [0; �r);
zs(�) is decreasing for both s 2 fl; rg by Lemma 4. In the range � 2 [�r; �r]; zl(�)

is decreasing while zr(�) = 0: Therefore, for � 2 [0; �r]; both t(L; �) and t(R; �) are
decreasing.

Also, t(L; �)� t(R; �) = (2q � 1)(zl(�)� zr(�)): In � 2 [0; �r); zl(�)� zr(�) > 0 since
0 � xl(�) < xr(�): In � 2 [�r; �r]; zl(�) > 0 and zr(�) = 0: Hence, for � 2 [0; �r]; t(L; �) >
t(R; �):
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For analogous reasons, in the range [�l; 1]; t(L; �) and t(R; �) are both upward sloping
and t(L; �) < t(R; �):

Finally, in the range (�r; �l); zl(�) is strictly decreasing and goes from F (xl(�
r)) > 0

to 0; while zr(�) is increasing and goes from 0 to 1 � F (xr(�l)) > 0: t(L; �) � t(R; �) =
(2q � 1)(zl(�) � zr(�)) is therefore a decreasing function which must also take value zero
at some unique �� 2 (�r; �l).

8.7 Proof of Remark 1

Continuity of ��(�) follows from continuity of vote share functions. Now, denote t(R; �) = x
and t(L; �) = y; and assume WLOG 0 < y < x < 1: For any � 2 (0; 1); the function
f(z) = z�(1 � z)1�� is single-peaked in [0; 1] and achieves maximum at z = �: Therefore,
the equation x�(1� x)1�� = y�(1� y)1�� has a unique solution �� and y < �� < x:

Consider now the expression for ��.

��

1� �� =
log(1� y)� log(1� x)

log x� log y

Denote the right hand side by h(x; y): We have

@h

@x
=

1

(log x� log y)2

�
1

1� x (log x� log y)�
1

x
log(1� y)� log(1� x)

�
Thus @h

@x > 0 if x
1�x >

��

1��� ; i.e., x > ��: Similarly, @h@y > 0 if y < ��: Since we have

y < �� < x; h(x; y) is increasing in both x and y: Since ��

1��� is itself increasing in �
�; it

must be increasing in both x and y:

8.8 Proof of Proposition 4

Consider � 2 (F (xL); F (xR)) : By Proposition 3, the only way � can belong to �O(�) would
be if � 2 (0; 1): By Proposition 1 and remark 1, ��(�) is continuous and monotonically
increasing in the range (0; 1): Moreover, ��(�) ! F (xL) < � as � ! 0 and ��(�) !
F (xR) > � as � ! 1: Thus, there is a uniuqe value �a such that �

�(�a) = �. Since �
�(�)

is increasing, �a is regular. Therefore, for all equilibrium sequences, �n� ! �a: Notice that
t(L; �a) < � < t(R; �a) by Proposition 1. By the Strong Law of Large numbers, P wins in
state R and Q in state L almost surely.

8.9 Proof of Proposition 5

Consider a voting rule � 2 (F (xL); 1� F (xR)) :We identify the three classes of equilibrium
sequences in (i), (ii) and (iii) we establish the existence of equilibrium sequences converging
to 1; �� and some � 2 (��; 1) respectively. In (iv) we establish that there is no equilibrium
sequence that converges to any belief in (0; ��) [ f1g.
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(i) From Proposition 3, � 2 �U (0). Since t(L; 0) = t(R; 0) = F (xL) > �; � = 0 is
regular. Therefore there is an equilibrium sequence with ��n ! 0; and in the limit of this
sequence, Q wins almost surely in both states.

(ii) From Proposition 3, we also have � 2 �U (��). Observe that t(L; ��) = t(R; ��) <
F (xL); since t(!; ��) = zl(�

�) and F (xL) = zl(0); and zl increases in the range (0; �l):
Since � > F (xL); �� is regular and there is an equilibrium sequence ��n ! �� and in the
limit of this sequence, Q wins almost surely in both states.

(iii) To show that there some � 2 (��; 1) such that there is an equilibrium sequence that
converges to �; we proceed in two steps. First, we show that there is some � 2 (��; 1) such
that the necessary condition � = �U (�) is met. Then we show that among the possibly
multiple values of � 2 (��; 1) satisfying the necessary condition, there must exist some �
that satis�es the su¢ ciency condition too.

For necessity, observe that (a) ��(�) is continuous in the range (��; 1); (b) ��(�) !
1�F (xR) > � as � ! 1; and (c) ��(�)! t < F (xL) < � as � ! ��: Therefore, there must
be some �1 in the range (0; �

�) such that ��(�1) = �:
To check for su¢ ciency, note that conditions (a), (b) and (c) above imply that some

solution to ��(�1) = � must satisfy one of the following two properties: (I) �
�(�) is locally

increasing at �1; or (II) there is some interval [�
0
1; �

00
1] � (��; �l) containing �1 such that

��(�) = � in [�01; �
00
1], and for some " > 0; ��(�) is increasing in (�01 � "; �01) as well as in

(�001; �
00
1 + "):

If property (I) holds, then �1 is regular and we are done. It is, however, possible that
the only values of � for which ��(�) = � are not regular because ��(�) is constant over some
interval [�01; �

00
1 ]. In this case, property (II) must hold. We now show that if property (II)

holds, then there must exist an equilibrium sequence with ��n converging to some value in
[�01; �

00
1 ]:

Denote t(R; �) = x, t(L; �) = y, g(x; y; �) = x�(1�x)1��
y�(1�y)1�� and B(�) =

h
1�x
1�y

in�m�1
where

m = bn�c
� : We can now write H(�; n; �) as B(�) [g(x; y; �)]

m : Notice that in the interval
[�01 � "; �001 + "]; 0 < y < x < 1. In [�01; �

00
1]; g(x; y; �) = 1 since � = �� for this interval.

Therefore, H(�; n; �) = B(�): We have Gn(�; �) =
B(�)
1+B(�) ; which is bounded above 0 and

below 1 for each n: By an argument employed before in the the Su¢ ciency Lemma in the
proof of Proposition 3, we have Gn(�; �)! 1 for all � 2 [�01� "0; �01); and Gn(�; �)! 0 for
all � 2 (�001; �001 + "0] for "0 > 0 small enough. Notice also that Gn(�; �) is continuous in �
for all � in [�01; �

00
1]: For large enough n; Gn(�; �)� � > 0 at �01 � "0 and Gn(�; �)� � < 0

at �001 + "
0: Therefore, there must exist a �xed point �n 2 (�01; �001) for all n large enough.

Since (�01; �
00
1) is contained in a closed and bounded interval [�

0
1; �

00
1]; a limit point must

also exist and lie in [�01; �
00
1]; and we are done.

We thus establish the existence of an equilibrium sequence with induced beliefs con-
verging to �1 2 (��; 1): By Proposition 2, t(L; �1) < � < t(R; �1) in (0; ��) and P wins in
state R and Q in state L almost surely.

It remains to show that we cannot have any equlibrium sequence with induced prior
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converging to values in (0; ��) [ f1g: For all � in (0; ��); ��(�) < t(L; �) < zl(�) < F (xL);
where the last inequality follows from the fact that zl(�) is decreasing in that range and
zl(0) = F (xL): Since � > F (xL); there is no � in (0; ��) for which � = ��(�): Finally,
observe that � =2 �U (1); and we are done.

8.10 Proof of Remark 2

At � = �l; ��(�) < t(R; �) = qzr(�l) = q
�
1� F

�
xr
�
�l
���

: By the condition that F (xL) �
q
�
1� F (xr

�
�l
��
; it must be the case that � > ��(�l); since � > F (xL): On the other

hand, we have � < ��(�) for � ! 1 since � < 1 � F (xR): By Remark 1, ��(�) is strictly
increasing in (�l; 1): Therefore, there is a unique solution �1 to � = ��(�) in the range
(�l; 1): Moreover, there is no solution to ��(�) = � in (��; �l]: At such a �1; property (I)
holds, and the rest follows from the proof of Proposition 5.

9 Supplementary Online Appendix

In this appendix, we provide the proof of Proposition Proof of Proposition 3. We prove
this proposition in several steps. We start with Lemma 1 in Bhattacharya (2013).

Lemma 8 For any given environment, if the limit belief in an equilibrium sequence is �0�,
then �

t(L; �0�)
�� �

1� t(L; �0�)
�1��

=
�
t(R; �0�)

�� �
1� t(R; �0�)

�1��
Proof. Note �rst, that by the usual continuity arguments, if �n� ! �0�; then t(!; �

n
� )!

t(!; �0�): Whenever t(!; �
0
�) = t(!; �0�); the Lemma holds trivially. Notice that this cov-

ers the cases �0� 2 f0; 1g ordered alternatives and �0� 2 f0; ��; 1g for unordered alternatives.

Now, consider �0� 2 (0; 1) and rewriteH(�n� ; n; �) as
h
1�t(R;�n� )
1�t(L;�n� )

in�m�1 � t(R;�n� )�(1�t(R;�n� ))1��
t(L;�n� )

�(1�t(L;�n� ))
1��

�m
where

m = bn�c
� . Since m � n � 1

� ; we have m ! 1 as n ! 1: Also, since 0 < t(!; �) < 1 and

m� n 2
�
0; 1�

�
; there is some 0 < t < t such that t �

h
1�t(R;�n� )
1�t(L;�n� )

in�m�1
� t for all m and

n: If there is some " > 0 such that
t(R;�n� )

�(1�t(R;�n� ))
1��

t(L;�n� )
�(1�t(L;�n� ))

1�� > 1 + " for all n large enough,

then lim
n!1

H(�n� ; n; �) > lim
n!1

t

�
t(R;�n� )

�(1�t(R;�n� ))
1��

t(L;�n� )
�(1�t(L;�n� ))

1��

� bn�c
�

> t
h
lim
m!1

(1 + ")m
i
! 1: Hence

the RHS of equation (13) is not bounded away from 1, which is a contradiction. Similarly,

if there is some " > 0 such that
t(R;�n� )

�(1�t(R;�n� ))
1��

t(L;�n� )
�(1�t(L;�n� ))

1�� < 1 � " for all n large enough; then

lim
n!1

H(�n� ; n; �) = 0; we have a contraction since the RHS of equation (13) is not bounded

away from 0:
Next, we state a version of Lemma 2 in Bhattacharya (2013) adapted to our setting.
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Lemma 9 (NECESSITY) De�ne by �(�) for each environment as given in Proposition
3. For a given � 2 [0; 1]; consider any sequence �n ! �: Now, if � =2 �(�); then H(�n; n; �)
is bounded away from �

1�� as n!1:

Proof. Consider the environment with ordered alternatives �rst.
The necessity of case (i) follows directly from Lemma 8. Next, consider case (ii),

i.e., �(0) = f� : � � F (xL)g : From Proposition 1, by continuity of vote share functions,
we know that as �n ! 0; both t(L; �n) and t(R; �n) converge to F (xL) and F (xL) <
t(L; �n) < t(R; �n): Notice now that for z 2 (0; 1); the the function z�(1 � z)1�� is single
peaked in z and attains its maximum at z = �: Now, if � > F (xL) ; then for all large enough
n; we have � > t(R; �n) > t(L; �n); which would imply that (t(R; �n))� (1� t(R; �n))1�� >

(t(L; �n))� (1� t(L; �n))1��. Therefore, we must haveH(�n; n; �) > t
h
t(R;�n)�(1�t(R;�n))1��

t(L;�n)�(1�t(L;�n))1��

i bn�c
�
>

t; which is bounded away from 0 in the limit. The proof of case (iii) is analogous.
Next, consider the environment with unordered alternatives. Case (i) follows from

Lemma 8. In case (ii), there is nothing to prove. Cases (iii) and (iv) are analogous to case
(ii) of the ordered alternatives case.

Our su¢ ciency result follows Lemma 3 in Bhattacharya (2013). We need a slightly
more relaxed concept of regularity in the present paper.

Lemma 10 (SUFFICIENCY) There is a sequence of equilibria with induced prior �n�
converging to � if � 2 �(�) and � is regular.

Proof. De�ne the function Gn(�; �) =
H(�;n;�)
1+H(�;n;�) : We show that provided that b� is

regular, if � 2 �(b�), then there is a sequence of �xed points �n� of Gn(�; �) such that
��n ! b�. We prove this separately for di¤erent values of b�:

We use the following result repeatedly in the proof: Suppose g(x; y; �) = x�(1�x)1��
y�(1�y)1�� for

some 1 > x > y > 0: Then, we must have @g(x;y;�)
@� > 0:

First consider some regular b� such that t(L; b�) 6= t(R; b�): WLOG, assume t(R; b�) >
t(L; b�): For such a b�; �(b�) = ��(b�) by Lemma 9 and notice that ��(�) has continuous and
bounded derivatives since f is continuous and bounded. Since b� is regular, there must be a
neighborhood (b��"; b�+") where ��(�) is either only increasing or only decreasing, and be-
cause f is bounded, t(R; �) > t(L; �). Suppose �rst that ��(�) is decreasing in (b��"; b�+"):
Write H(�; n; �) as B(�) [g(x; y; �)]m where x = t(R; �), y = t(L; �); B(�) =

h
1�x
1�y

in�m�1
and m = bn�c

� : B(�) is bounded above and below. Now, for � 2 (b�; b� + "); we must have
g(x; y; ��(b�)) > 1; since ��(b�) > ��(�) as ��(�) is decreasing. Moreover, g(x; y; ��(�)) = 1
by de�nition. As n!1; m must also go to1; and then,

h
g(x; y; ��(b�))im !1; implying

that H(�; n; ��(b�))!1; i.e., Gn(�; ��(b�))! 1:
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We have just shown that for � 2 (b�; b�+ "); we must have Gn(�; ��(b�))! 1 as n!1:
On the other hand, for � 2 (b�� "; b�); we must have Gn(�; ��(b�))! 0 as n!1: Consider
the (continuous) function Gn(�; ��(b�)) � � in the range � 2 (b� � "; b� + "): Given "; for
large enough n; it is positive for � = b� + "; and negative for � = b� � ": Thus, there must
exist some ��

�(b�)
n 2 (b� � "; b� + ") such that Gn ����(b�)n ; ��(b�)�� ���(b�)n = 0 for all n large

enough. Thus, there exists a sequence ��
�(b�)
n such that for any " > 0 small enough, there

is some M such that for all n > M; Gn

�
�
��(b�)
n ; ��(b�)� = �

��(b�)
n and

������(b�)n � b���� < ": If

��(�) is increasing in (b� � "; b� + "); then we can prove the result in an analogous way.
Next, consider b� = �� 6= 1

2 ; and denote t(L; �
�) = t(R; ��) = t: WLOG, suppose �rst

that �� > 1
2 : Since t(L;

b�) = t(R; b�); Gn(b�; �) = 1
2 for all (n; �): Then, consider any � > t:

Since by proposition 2, t(R; �) > ��(�) > t(L; �) for all � 2 (b�; b� + "); given � we can
choose " small enough such that � > ��(�) for all � 2 (b�; b�+ "): Therefore Gn(�; �)! 1 in
this interval: Now, consider the continuous function Gn(�; �)�� in this interval. For large
enough n; it is positive at b� + " and negative at b�: Therefore, Gn(�; �) must have a �xed
point �n in this interval. Thus, there exists a sequence �n such that for any " > 0 small

enough, there is some m such that for all n > m; Gn(�n; �) = �n and
����n � b���� < " for any

� > t: To show the existence of a sequence of beliefs converging to b� for voting rules � < t;
follow an analogous method.

If b� = �� = 1
2 ; consider a sequence �n =

b� for all n:We are done, sinceGn(b�; �) = 1
2 =

b�
for all n:

Finally, consider the cases with b� 2 f0; 1g: Suppose �rst that b� = 1: For the ordered
alternatives case, consider any � > 1 � F (xR) : Now, by proposition 1 we must have
� > t(R; �) > ��(�) > t(L; �) for small enough (0; "): Notice that Gn(�; �) ! 1 in this
interval. The function Gn(�; �) � � is equal to �1

2 at � = 1 and positive (close to ") at
� = " for large enough n: Therefore, there must be a �xed point of Gn(�; �) in (0; "): The
other cases with b� 2 f0; 1g are similar.
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